• 제목/요약/키워드: 딥러닝 분석

Search Result 1,403, Processing Time 0.038 seconds

Embedded artificial intelligence system development for action estimation on construction site (사용자 행동예측을 위한 임베디드 인공지능 엔진 및 시스템 기술 개발)

  • Song, Hyok;Choi, Inkyu;Ko, Minsoo;Yoo, Jisang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.226-227
    • /
    • 2021
  • 딥러닝을 활용한 영상 분석 기술은 GPU 하드웨어의 발전으로 인하여 소프트웨어 기반 처리 기술이 급격히 발전하였고 기존 패턴 분석 기술 대비 높은 정확도를 보여주고 있다. PC나 특정 하드웨어에서 동작하는 소프트웨어 기반 영상분석기술은 적용분야의 한계가 발생하였다. 신경망 기술을 하드웨어로 구현한 NPU(Network processing unit)의 개발로 고가의 플랫폼이 아닌 임베디드 플랫폼에서의 딥러닝 구현이 가능해졌다. 반면에 하드웨어에서 활용 가능한 네트워크가 제한적임으로 인하여 구현 가능한 딥러닝 모델의 크기, 메모리 등의 한계가 있으며 시시각각 변하는 딥러닝 기술에 기반한 최신모델 또는 고성능 모델을 구동하기에는 한계가 발생하였다. 이를 해결하기 위하여 본 연구에서는 Distillation 기법을 적용한 임베디드 시스템을 개발하고 이에 기반한 딥러닝 모델의 구현 및 상황에 따른 가변적 딥러닝 모델의 적용이 가능한 시스템을 구현하였다.

  • PDF

Trends on Distributed Frameworks for Deep Learning (딥러닝 분산처리 기술동향)

  • Ahn, S.Y.;Park, Y.M.;Lim, E.J.;Choi, W.
    • Electronics and Telecommunications Trends
    • /
    • v.31 no.3
    • /
    • pp.131-141
    • /
    • 2016
  • 최근 알파고를 통해 인공지능 기술이 전 세계인의 이목을 집중시켰던 반면, 인공지능 연구자들은 인공지능 부활에 결정적 역할을 한 딥러닝 기술에 주목하고 있다. 딥러닝은 다계층 인공신경망 기반의 기계학습 기술로서 최근 컴퓨터 비전, 음성인식, 자연어 처리 분야에서 인식 성능을 높이는 데 중요한 역할을 하고 있다. 딥러닝 기술을 이용하여 기계가 수천만장의 이미지를 학습하여 객체를 인식하게 하고, 수천 시간의 음성 데이터를 학습하여 사람의 말을 알아듣게 처리하는 데에는 다수의 고성능 컴퓨터가 필요하다. 따라서 딥러닝에는 다수의 컴퓨터를 효율적으로 이용하기 위한 분산처리 기술이 필수적이며 관련 연구들이 활발히 진행되고 있다. 이에 본고는 다중 컴퓨터 노드들에서 딥러닝 모델을 분산처리할 수 있는 기존의 프레임워크들을 비교 분석하고 딥러닝 분산처리 기술에 대한 발전 방향을 전망한다.

  • PDF

A Method of Constructing Large-Scale Train Set Based on Sentiment Lexicon for Improving the Accuracy of Deep Learning Model (딥러닝 모델의 정확도 향상을 위한 감성사전 기반 대용량 학습데이터 구축 방안)

  • Choi, Min-Seong;Park, Sang-Min;On, Byung-Won
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.106-111
    • /
    • 2018
  • 감성분석(Sentiment Analysis)은 텍스트에 나타난 감성을 분석하는 기술로 자연어 처리 분야 중 하나이다. 한국어 텍스트를 감성분석하기 위해 다양한 기계학습 기법이 많이 연구되어 왔으며 최근 딥러닝의 발달로 딥러닝 기법을 이용한 감성분석도 활발해지고 있다. 딥러닝을 이용해 감성분석을 수행할 경우 좋은 성능을 얻기 위해서는 충분한 양의 학습데이터가 필요하다. 하지만 감성분석에 적합한 학습데이터를 얻는 것은 쉽지 않다. 본 논문에서는 이와 같은 문제를 해결하기 위해 기존에 구축되어 있는 감성사전을 활용한 대용량 학습데이터 구축 방안을 제안한다.

  • PDF

A comparison study of deep-learning and hydrological modeling in the perspective of rainfall-runoff simulation (수문모의 측면의 딥러닝과 수문모형 비교연구)

  • Kwak, Jaewon;Park, Jungsool;Lee, Jonghyun;Cha, Junho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.36-36
    • /
    • 2022
  • 2010년대 후반에 딥 러닝 관련 기술이 발전하고 복잡한 강우-유출 현상을 모의하는데 적합하다는 점이 알려지면서 많은 수문관련 연구에서 딥러닝 기법을 통하여 수문모델링을 대체 가능함을 제시하여 왔다. 그러나, 이러한 가능성은 단순 모의효율을 통한 분석이므로 실제 수문관리 현장에 대한 적용을 위한 고찰이 필요한 시점이다. 이에 본 연구에서는 딥러닝 기법을 통하여 수문모의의 가능성을 고찰하고 개선점을 고찰하고자 한다. 이를 위하여 수문자료에 많이 적용되는 LSTM 기법과 수문모형인 TANK모형을 이용하여 경상남도의 형산강 유역을 대상으로 2013년부터 2020년까지의 유출량을 모의하고 그 결과를 비교 분석하였다. 형산강 유역에 대한 수문모의를 수행한 결과, LSTM 기법을 이용한 수문모의가 TANK모형에 비하여 높은 모의효율을 보여주었다. 그러나, 높은 모의효율에도 불구하고 유역의 물리적인 강우-유출과정을 모사하는 수문모형과 달리 LSTM 기법은 인간이 이해할 수 없는 과정을 통하여 학습하고 구조화되므로 기존과 다른 경향의 입력자료로 인한 예측오류가 발생할 가능성과 그에 따른 인간의 판단불가에 따른 문제를 내포하고 있음을 고찰하였다. 따라서, 딥러닝을 이용하여 수문모델링 분야에 수문모형을 전면적으로 대체하기에는 어려움이 있을 것이다. 본 연구에서는 현재까지의 딥러닝을 이용하여 수문모형을 대체하기 위해서는 ① 국민의 생활에 직접적으로 영향을 미치는 분야가 아닌 단순 연구목적이나 위험성 분석 등에 적용하거나, ② 딥러닝의 모의결과에 대해 사용자가 검토하거나 판단할 수 있는 의사결정 체계를 구축하거나, ③ 도출된 결과에 대한 윤리적 검토나 책임소재에 대한 사회적 합의 등이 선결되어야 할 것이다.

  • PDF

Predicting the influent properties in an infiltration trench through deep learning analysis (딥러닝 분석을 통한 침투도랑 내 유입수 성상 예측분석)

  • Jeon, Minsu;Choi, Hyeseon;Geronimo, Franz Kevin;Heidi, Guerra;Jett, Reyes Nash;Kim, Leehyung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.363-363
    • /
    • 2022
  • LID 시설에 대한 모니터링은 인력을 활용한 실강우 모니터링을 진행하고 있으나 LID 시설은 소규모 분산형시설로서 인력을 동원한 식생고사, 강우시 모니터링, 현장답사 등 꾸준한 시설확인에 한계가 있으며, LID 시설을 조성한 이후 적정한 유지관리 방법(주기, 빈도, 항목 등)을 인지하지 못하여 막힘현상, 효율저하, 식물고사 등의 문제가 발생한다. 따라서 본연구에서는 딥러닝 분석을 활용하여 강우시 강우모니터링 자료와 LID 시설 내 센서를 통해 측정된 자료를 통해 침투도랑 내 유입수 성상에 대한 예측분석을 수행하였다. 심지 내 LID 시설에 유입되는 오염물질을 예측을 위한 딥러닝 분석을 위해 과거 실강우시 모니터링 자료(TSS, COD, TN, TP)와 대기센서(대기습도, 대기온도, 강수량, 미세먼지) 데이터를 활용하여 딥러닝 모델에 대한 적용가능성 평가를 수행하였다. 측정항목에 대한 상관성 분석을 수행하였으며, 딥러닝 모델은 Tenser Flow를 이용하여 DNN(Deep Neural Network)모델을 활용하여 분석하였다. DNN 모델에 대한 MSE값은 0.31로 분석되었으며, TSS에 대한 평균 50.6mg/L로 분석되었으며, COD 평균 98.7 mg/L로 나타났다. TN의 평균 2.21 mg/L로 분석되었으며, TP 평균 0.67 mg/L로 나타났다. 상관계수분석결과 TSS는 0.53로 분석되었으며, TN과 TP의 상관계수는 0.10, 0.56으로 나타났다. COD의 상관계수는 0.63으로 TSS와 COD, TP에 대한 예측이 된 것으로 분석되었다. 딥러닝을 통한 LID 시설 내 농도변화 예측시 강우시 센서데이터 값은 조밀해야하며 오염물질 농도와 상관성이 높은 항목들에 대해 계측과 실강우 모니터링 자료를 축적하여 미래에 대한 활용성을 높여야 한다.

  • PDF

Research on the Development of Automatic Damage Analysis System for Railway Bridges using Deep Learning Analysis Technology Based on Unmanned Aerial Vehicle (무인이동체 기반 딥러닝 분석 기술을 활용한 철도교량 자동 손상 분석 기술 개발 연구)

  • Na, Yong-Hyoun;Park, Mi-Yeon
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2022.10a
    • /
    • pp.347-348
    • /
    • 2022
  • 본 연구에서는 무인이동체를 활용한 철도교량의 외관조사 점검을 보다 효율적이고 객관성 있게 수행하기 위하여 무인이동체를 통해 촬영된 이미지를 딥러닝 기반 분석기술을 활용하여 손상 자동으로 분석 하기위한 기술을 연구하였다. 철도교량의 외관 손상 중 균열, 콘크리트 박리·박락, 누수, 철근노출에 대한 손상 이미지를 추출하여 딥러닝 분석 모델을 생성하고 학습한 분석 모델을 적용한 시스템을 실제 현장에 적용 테스트를 수행하였으며 학습 구현된 분석모델의 검측 재현율을 검토한 결과 평균 95%이상의 감지성능을 검토할 수 있었다. 개발 제안된 자동손상분석 기술은 기존 육안점검 결과 대비 보다 객관적이고 정밀한 손상 검측이 가능하며 철도 유지관리 분야에서 무인이동체를 활용한 외관조사 업무를 수행함에 있어 기존 대비 객관적인 결과도출과 소요시간, 비용저감이 가능할 것으로 기대된다.

  • PDF

A Comparison and Analysis of Deep Learning Framework (딥 러닝 프레임워크의 비교 및 분석)

  • Lee, Yo-Seob;Moon, Phil-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.1
    • /
    • pp.115-122
    • /
    • 2017
  • Deep learning is artificial intelligence technology that can teach people like themselves who need machine learning. Deep learning has become of the most promising in the development of artificial intelligence to understand the world and detection technology, and Google, Baidu and Facebook is the most developed in advance. In this paper, we discuss the kind of deep learning frameworks, compare and analyze the efficiency of the image and speech recognition field of it.

Development of Deep Learning-Based House-Tree-Person Test Analysis Model (딥러닝 기반 집-나무-사람 검사 분석 모델의 개발)

  • Cho, Seung-Je;Cho, Geon-Woo;Kim, Young-wook
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.558-561
    • /
    • 2021
  • 심리학에서 사람의 심리 상태를 알아보기 위해 사용되는 검사 방법 중, 집-나무-사람 검사(HTP Test)는 피실험자가 그린 집, 나무, 사람을 포함하는 그림을 사용하여 피실험자의 심리를 분석하는 투영 검사법이다. 본 논문에서는 딥러닝 모델을 이용해 HTP Test 에 사용되는 그림을 분석하는 시스템을 제안하며, 성능 평가를 통해 심리학에서의 딥러닝 모델 적용 가능성을 확인한다. 또한 그림 데이터 분석에 적합한 사전 훈련 모델을 개발하기 위해, ImageNet 과 스케치 데이터셋으로 사전 훈련하여 성능을 비교한다. 본 논문에서 제안하는 시스템은 크게 감정 분석을 위한 이미지 객체 추출부, 추출된 객체로 피실험자의 감정을 분류하는 감정 분류부로 구성되어 있다. 객체 추출과 이미지 분류 모두 CNN(Convolution Neural Network) 기반의 딥러닝 모델을 사용하며, 이미지 분류 모델은 서로 다른 데이터셋으로 모델을 사전 훈련한 후, 훈련 데이터셋으로 전이 학습하여 모델의 성능을 비교한다. 그림 심리 분석을 위한 HTP test 스케치 데이터셋은, HTP Test 와 동일하게 피실험자가 3 개 클래스의 집, 나무, 사람의 그림을 그려 자체 수집하였다.

Ensure intellectual property rights for 3D pringting 3D modeling design (딥러닝 인공지능을 활용한 사물인터넷 비즈니스 모델 설계)

  • Lee, Yong-keu;Park, Dae-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.351-354
    • /
    • 2016
  • The competition of Go between AlphaGo and Lee Sedol attracted global interest leading AlphaGo to victory. The core function of AlphaGo is deep-learning system, studying by computer itself. Afterwards, the utilization of deep-learning system using artificial intelligence is said to be verified. Recently, the government passed the loT Act and developing its business model to promote loT. This study is on analyzing IoT business environment using deep-learning AI and constructing specialized business models.

  • PDF

Animal Appearance Recognition using Deep Learning Image Analysis (딥러닝 이미지 분석을 활용한 동물 외형 인식)

  • Park, Jae-Cheol;Hwang, Jeong-Tae;Song, Da-won;Kim, Dong-Jun;Lee, Jun-Pyo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.197-198
    • /
    • 2021
  • 반려동물에 대한 인식변화와 고령화, 저출산 문제로 반려동물을 키우는 사람이 계속해서 증가하고 있다. 하지만 반려동물을 유기하는 경우도 많아져 정부에서는 반려동물 등록제를 시행하여 동물 유기를 예방하고 있다. 그럼에도 불구하고 동물 등록 절차의 번거로움과 부작용 우려로 인해 많은 사람이 등록을 하고 있지 않는 실태이다. 본 논문에서는 딥러닝 이미지 분석을 활용한 동물 외형분석 기술을 제안한다. 제안하는 기술은 동물 이미지에서 특징점 추출을 위해 CNN과 구글에서 제공하는 딥러닝 프레임워크인 텐서플로우(TensorFlow)를 활용하며 동물의 외형을 분석해 동물의 고유한 외형 정보를 얻을 수 있다. 이를 통해 각 개체를 특정할 수 있어 현재 시행되고 있는 동물 등록방법을 대체하여 동물 유기문제 해결에 기여할 것으로 기대한다.

  • PDF