• Title/Summary/Keyword: 딥러닝 교육

Search Result 125, Processing Time 0.027 seconds

Verification of educational goal of reading area in Korean SAT through natural language processing techniques (대학수학능력시험 독서 영역의 교육 목표를 위한 자연어처리 기법을 통한 검증)

  • Lee, Soomin;Kim, Gyeongmin;Lim, Heuiseok
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.1
    • /
    • pp.81-88
    • /
    • 2022
  • The major educational goal of reading part, which occupies important portion in Korean language in Korean SAT, is to evaluated whether a given text can be fully understood. Therefore given questions in the exam must be able to solely solvable by given text. In this paper we developed a datatset based on Korean SAT's reading part in order to evaluate whether a deep learning language model can classify if the given question is true or false, which is a binary classification task in NLP. In result, by applying language model solely according to the passages in the dataset, we were able to acquire better performance than 59.2% in F1 score for human performance in most of language models, that KoELECTRA scored 62.49% in our experiment. Also we proved that structural limit of language models can be eased by adjusting data preprocess.

Dataset Construction of Taekwondo Beginner AI (태권도 초심자를 위한 AI의 DataSet 구축)

  • Cho, Kyu Cheol;Kim, Ju Yeon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.249-252
    • /
    • 2022
  • 세계 태권도 연맹은 국제 축구 연맹의 가입국과 동일한 수의 가입국을 보유할 만큼 태권도는 점점 더 세계적으로 나아가고 있다. 하지만 태권도의 교육방법은 예전과 다르지 않다. 도장의 관장이나 사범이 직접 자세를 눈으로 보고 판단하여 지도해야 한다. 본 연구는 기술이 발전하고 변화함에 따라 태권도를 조금 더 다양하고 흥미롭게 배울 수 있는 방법을 개발하고자 진행하였다. 본 논문에서는 피사체 모델을 촬영하여 이미지를 추출하고 이미지에서 사람의 관절 KeyPoint를 라벨링 한 후 이를 바탕으로 COCO 형식의 DataSet을 만들어낸다. 이후 이 DataSet을 기계에 학습을 시킨다면 초심자를 위한 교육용 태권도 AI가 만들어질 수 있다. 또한, 기계학습 이후 이 AI를 실제 교육현장에 적용하여 교육과정에 직접 사용할 수 있으며 이 AI를 바탕으로 교육용 게임 개발 등 다양한 방면으로 활용할 수 있을 것이라고 기대한다.

  • PDF

Motor Anomaly Detection Using LSTM Autoencoder (LSTM Autoencoder를 활용한 전동기 이상 탐지)

  • Jun-Seok Park;Yoo-Jin Ha;Jae-Chern Yoo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.307-309
    • /
    • 2023
  • 본 논문에서는 LSTM Autoencoder를 활용한 전동기의 Anomaly Detection을 제안한다. 전동기의 Anomaly Detection를 통해 전동킥보드의 고장을 예방하여 이용자의 안전을 보장한다. 전동기로부터 얻은 시계열 진동 데이터와 시계열 데이터 분석에 유의미한 LSTM을 활용한 Autoencoder를 통해 Anomaly Detection을 구현했다. 그 결과 99.9%의 정확도를 기록하였다.

  • PDF

A Study on the Analysis and Estimation of the Construction Cost by Using Deep learning in the SMART Educational Facilities - Focused on Planning and Design Stage - (딥러닝을 이용한 스마트 교육시설 공사비 분석 및 예측 - 기획·설계단계를 중심으로 -)

  • Jung, Seung-Hyun;Gwon, Oh-Bin;Son, Jae-Ho
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.25 no.6
    • /
    • pp.35-44
    • /
    • 2018
  • The purpose of this study is to predict more accurate construction costs and to support efficient decision making in the planning and design stages of smart education facilities. The higher the error in the projected cost, the more risk a project manager takes. If the manager can predict a more accurate construction cost in the early stages of a project, he/she can secure a decision period and support a more rational decision. During the planning and design stages, there is a limited amount of variables that can be selected for the estimating model. Moreover, since the number of completed smart schools is limited, there is little data. In this study, various artificial intelligence models were used to accurately predict the construction cost in the planning and design phase with limited variables and lack of performance data. A theoretical study on an artificial neural network and deep learning was carried out. As the artificial neural network has frequent problems of overfitting, it is found that there is a problem in practical application. In order to overcome the problem, this study suggests that the improved models of Deep Neural Network and Deep Belief Network are more effective in making accurate predictions. Deep Neural Network (DNN) and Deep Belief Network (DBN) models were constructed for the prediction of construction cost. Average Error Rate and Root Mean Square Error (RMSE) were calculated to compare the error and accuracy of those models. This study proposes a cost prediction model that can be used practically in the planning and design stages.

Deep Learning-based Person Analysis in Oriental Painting for Supporting Famous Painting Habruta (명화 하브루타 지원을 위한 딥러닝 기반 동양화 인물 분석)

  • Moon, Hyeyoung;Kim, Namgyu
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.9
    • /
    • pp.105-116
    • /
    • 2021
  • Habruta is a question-based learning that talks, discusses, and argues in pairs. In particular, the famous painting Habruta is being implemented for the purpose of enhancing the appreciation ability of paintings and enriching the expressive power through questions and answers about the famous paintings. In this study, in order to support the famous painting Habruta for oriental paintings, we propose a method of automatically generating questions from the gender perspective of oriental painting characters using the current deep learning technology. Specifically, in this study, based on the pre-trained model, VGG16, we propose a model that can effectively analyze the features of Asian paintings by performing fine-tuning. In addition, we classify the types of questions into three types: fact, imagination, and applied questions used in the famous Habruta, and subdivide each question according to the character to derive a total of 9 question patterns. In order to verify the feasibilityof the proposed methodology, we conducted an experiment that analyzed 300 characters of actual oriental paintings. As a result of the experiment, we confirmed that the gender classification model according to our methodology shows higher accuracy than the existing model.

Adaptive Key-point Extraction Algorithm for Segmentation-based Lane Detection Network (세그멘테이션 기반 차선 인식 네트워크를 위한 적응형 키포인트 추출 알고리즘)

  • Sang-Hyeon Lee;Duksu Kim
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.1
    • /
    • pp.1-11
    • /
    • 2023
  • Deep-learning-based image segmentation is one of the most widely employed lane detection approaches, and it requires a post-process for extracting the key points on the lanes. A general approach for key-point extraction is using a fixed threshold defined by a user. However, finding the best threshold is a manual process requiring much effort, and the best one can differ depending on the target data set (or an image). We propose a novel key-point extraction algorithm that automatically adapts to the target image without any manual threshold setting. In our adaptive key-point extraction algorithm, we propose a line-level normalization method to distinguish the lane region from the background clearly. Then, we extract a representative key point for each lane at a line (row of an image) using a kernel density estimation. To check the benefits of our approach, we applied our method to two lane-detection data sets, including TuSimple and CULane. As a result, our method achieved up to 1.80%p and 17.27% better results than using a fixed threshold in the perspectives of accuracy and distance error between the ground truth key-point and the predicted point.

Deep learning based teacher candidate acceptance prediction using college credits and activities (딥 러닝 기반 대학 이수학점 및 활동에 의한 교원임용 후보자 경쟁 시험 합격여부 예측)

  • Kim, Geun-Ho;Kim, Eui-Jeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.8
    • /
    • pp.917-922
    • /
    • 2019
  • The recent increase in preference for teacher jobs has led to a rise in preference for education colleges. Not all students can enter teachers, but they must pass the test called the competitive examination for teacher appointment candidates after graduation. However, due to the declining population, the and employment T.O.s are decreasing every year and the competition rate is rising steeply. Therefore, in order to concentrate on the recruitment exam upon entering the university, the university is becoming a huge academy for the exam, not a place to study and learn. We found a connection between students' overall school life and their use of study groups as well as their grades and whether they passed the competition test for teachers using deep running. The academic activities did not significantly affect the acceptance process, and the accuracy of the prediction of the acceptance rate was generally 70% accurate.

Classification of Raccoon dog and Raccoon with Transfer Learning and Data Augmentation (전이 학습과 데이터 증강을 이용한 너구리와 라쿤 분류)

  • Dong-Min Park;Yeong-Seok Jo;Seokwon Yeom
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.1
    • /
    • pp.34-41
    • /
    • 2023
  • In recent years, as the range of human activities has increased, the introduction of alien species has become frequent. Among them, raccoons have been designated as harmful animals since 2020. Raccoons are similar in size and shape to raccoon dogs, so they generally need to be distinguished in capturing them. To solve this problem, we use VGG19, ResNet152V2, InceptionV3, InceptionResNet and NASNet, which are CNN deep learning models specialized for image classification. The parameters to be used for learning are pre-trained with a large amount of data, ImageNet. In order to classify the raccoon and raccoon dog datasets as outward features of animals, the image was converted to grayscale and brightness was normalized. Augmentation methods were applied using left and right inversion, rotation, scaling, and shift to create sufficient data for transfer learning. The FCL consists of 1 layer for the non-augmented dataset while 4 layers for the augmented dataset. Comparing the accuracy of various augmented datasets, the performance increased as more augmentation methods were applied.

Prediction of cyanobacteria harmful algal blooms in reservoir using machine learning and deep learning (머신러닝과 딥러닝을 이용한 저수지 유해 남조류 발생 예측)

  • Kim, Sang-Hoon;Park, Jun Hyung;Kim, Byunghyun
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1167-1181
    • /
    • 2021
  • In relation to the algae bloom, four types of blue-green algae that emit toxic substances are designated and managed as harmful Cyanobacteria, and prediction information using a physical model is being also published. However, as algae are living organisms, it is difficult to predict according to physical dynamics, and not easy to consider the effects of numerous factors such as weather, hydraulic, hydrology, and water quality. Therefore, a lot of researches on algal bloom prediction using machine learning have been recently conducted. In this study, the characteristic importance of water quality factors affecting the occurrence of Cyanobacteria harmful algal blooms (CyanoHABs) were analyzed using the random forest (RF) model for Bohyeonsan Dam and Yeongcheon Dam located in Yeongcheon-si, Gyeongsangbuk-do and also predicted the occurrence of harmful blue-green algae using the machine learning and deep learning models and evaluated their accuracy. The water temperature and total nitrogen (T-N) were found to be high in common, and the occurrence prediction of CyanoHABs using artificial neural network (ANN) also predicted the actual values closely, confirming that it can be used for the reservoirs that require the prediction of harmful cyanobacteria for algal management in the future.

Deep Learning for Pet Image Classification (애완동물 분류를 위한 딥러닝)

  • Shin, Kwang-Seong;Shin, Seong-Yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.151-152
    • /
    • 2019
  • In this paper, we propose an improved learning method based on a small data set for animal image classification. First, CNN creates a training model for a small data set and uses the data set to expand the data set of the training set Second, a bottleneck of a small data set is extracted using a pre-trained network for a large data set such as VGG16 and stored in two NumPy files as a new training data set and a test data set, finally, learn the fully connected network as a new data set.

  • PDF