• Title/Summary/Keyword: 디지털 조합회로 간략화

Search Result 2, Processing Time 0.014 seconds

Implementation of Simplification Procedure for Digital Combinational Logic Circuits Using Java Applets (자바 애플릿을 이용한 디지털 조합회로의 간략화 과정 구현)

  • Moon, Hun-Joo;Kim, Dong-Sik;Moon, Il-Hyun;Choi, Kwan-Sun;Lee, Sun-Heum
    • The Journal of Korean Association of Computer Education
    • /
    • v.10 no.4
    • /
    • pp.17-25
    • /
    • 2007
  • In this paper, the simplification procedure of Karnaugh Map, which is essential to design digital logic circuits, was implemented as a web-based educational tool by Java applet. The learners can make virtual experiments on the simplification of the digital logic circuit by clicking on some buttons or filling out some text fields. The proposed simplification procedure was implemented as a Java applet which is based on the Modified Quine-McCluskey algorithm. Thus, the implemented Java applet will enable the learners to enhance the learning efficiency as a auxiliary educational tool.

  • PDF

Design and Analysis of Educational Java Applets for Learning Simplification Procedure Using Karnaugh Map (Karnaugh Map 간략화 과정의 학습을 위한 교육용 자바 애플릿의 설계와 해석)

  • Kim, Dong-Sik;Jeong, Hye-Kyung
    • Journal of Internet Computing and Services
    • /
    • v.16 no.3
    • /
    • pp.33-41
    • /
    • 2015
  • In this paper, the simplification procedure of Karnaugh Map, which is essential to design digital logic circuits, was implemented as web-based educational Java applets. The learners will be able to experience interesting learning process by executing the proposed Java applets. In addition, since the proposed Java applets were designed to contain educational technologies by step-by-step procedure, the maximization of learning efficiency can be obtained. The learners can make virtual experiments on the simplification of digital logic circuits by clicking on some buttons or filling out some text fields. Furthermore, the Boolean expression and its schematic diagram occurred in the simplification process will be displayed on the separate frame so that the learners can learn effectively. The schematic diagram enables them to check out if the logic circuit is correctly connected or not. Finally, since the simplification algorithm used in the proposed Java applet is based on the modified Quine-McCluskey minimization technique, the proposed Java applets will show more encouraging result in view of learning efficiency if it is used as assistants of the on-campus offline class.