• Title/Summary/Keyword: 디지털 엔진제어장치

Search Result 10, Processing Time 0.026 seconds

A Study on Certification of Electronic Engine Controls (항공기 엔진제어시스템 인증기술 개발)

  • Lee, Kang-Yi;Han, Sang-Ho;Jin, Young-Kwon;Lee, Sang-Joon;Kim, Kui-Soon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.104-109
    • /
    • 2005
  • The aircraft gas turbine engines with the Electronic Engine Controls(EEC) had been developed to save fuel and enhance their performance in the early days, and had employed the health monitoring function in the Full Authority Digital Engine Controls(FADEC) to improve their reliability. This has led to an increasing demand for the certification technology of these controls. The design and certification issues of power supply, aircraft supplied data, failure modes, software verification/validation, and lightning requirements need to be addressed. This paper presents the design considerations and the certification techniques applied to the electronic engine controls. And it is believed that this paper will be basis to establish a requirement in Korean Airworthiness Standard.

A Study on the Method of Air-Fuel Ratio by Immediate Control in SI Engine (SI 기관의 공연비 제어 방법에 관한 연구)

  • Lee, J.S.;Lee, J.S;Ha, J.Y.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.252-258
    • /
    • 1998
  • In a SI engine, it is necessary to control fuel quantity in accordance with intake air amount in order to reduce exhaust emission and improve the specific fuel consumption. Generally the map data is used for the vehicles with a SI engine. For the precise control of air-fuel ratio, the real time control method is recommended rather than the control method using map data. In this paper, we developed real time control system using microprocessor and IBM-PC, and applied it to the commercial SI engine. We got good results for air-fuel ratio under the idle condition.

  • PDF

Automobile Engine Information Display Device Using CAN Communication (캔 통신을 이용한 자동차 엔진 정보 표시장치)

  • Park, Yang-Jae
    • Journal of Digital Convergence
    • /
    • v.17 no.12
    • /
    • pp.203-210
    • /
    • 2019
  • Most cars today use electronic control to control the state of the engine to achieve optimum performance. This study developed a device for maintaining fault diagnosis and optimal vehicle status by displaying the engine information of a car on the screen in real time using can communication. This system displays information generated from the engine to the driver in real time such as engine intake and exhaust temperature, current battery voltage, tire pressure, RPM, DPF collection amount, torque, and horsepower through the OBD2 socket. You can check immediately. It can help you to drive safely by measuring tire pressure and displaying it on the screen, and it provides a mode to set the shift timing to suit your taste. In particular, in the case of diesel engine cars, the problems caused by smoke can adversely affect the performance and environmental pollution. Therefore, the system was developed to display the DPF collection amount on the system screen to prevent environmental pollution and to manage the vehicle efficiently.

Development of an Integrated High Fidelity Helicopter and Engine Simulation for Control System Design (헬리콥터용 가스터빈 엔진의 제어기 설계를 위한 고충실도 통합 시뮬레이션 개발)

  • Choi, Kee-Young;Jang, Se-Ah;Choi, Ki-Young;Eom, Joo-Sang;Lee, Beom-Suk;Son, Young-Chang;Ryu, Hyeok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.249-257
    • /
    • 2010
  • Full authority digital engine control systems for gas turbine engines are replacing conventional mechanical control units rapidly. However, setting up design processes of controllers for high performance helicopter engines are not well known because of the complexity of the total system. This paper presents a high fidelity helicopter and engine simulation for control system design and analysis. Using this environment, a feedforward schedule was set up for a utility helicopter. The total engine simulation with the new controller showed better or equal performance compared to the total engine simulation with the pre-existing controller.

Safety Assessment for Aircraft Engines (항공기 엔진 안전성 평가기술)

  • Lee, Kang-Yi;Yoo, Seung-Woo;Kim, Kui-Soon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.6
    • /
    • pp.26-34
    • /
    • 2007
  • The efforts to develop high performance aircraft engines are successively progressed with development of recent technology. The reliability of individual parts and the safety of engine systems are reduced if high efficiency components, high strength materials, and precise controls are applied to the engine with complexity to increase engine performance. In this paper, the regulation requirements and assessment technique for aircraft engine safety are considered, and the result of safety assessment on a turbine case cooling system of high efficiency turbofan engine is presented.

Design of a Control System for the Emergency Diesel Generator (비상용 디젤발전기 제어시스템 설계)

  • Kim, Jin-ae;Joo, Jae-hun;Baek, Pan-Geun;Kim, Byeong-Jun;Choi, Jung-Keyng
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.849-853
    • /
    • 2009
  • A generator is in use for a moving vehicle like car, aircraft, ship as well as key industry including a thermal power plant, a water power plant, a nuclear power plant, and so on. Such the AC generator plays an important role in vehicle, ship, aircraft, and so forth, at the point of generating electric power. Especially in the matter of the ship, the emergency generator system is mounted to provide against malfunction of main generator on a voyage. So, it is ordered that the system can monitor the main generator and operate the emergency generator when the emergency happens. This study is about controller for the emergency diesel engine generator and design of a various software.

  • PDF

A Study on the Development of High Sensitivity Collision Simulation with Digital Twin (디지털 트윈을 적용한 고감도 충돌 시뮬레이션 개발을 위한 연구)

  • Ki, Jae-Sug;Hwang, Kyo-Chan;Choi, Ju-Ho
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.4
    • /
    • pp.813-823
    • /
    • 2020
  • Purpose: In order to maximize the stability and productivity of the work through simulation prior to high-risk facilities and high-cost work such as dismantling the facilities inside the reactor, we intend to use digital twin technology that can be closely controlled by simulating the specifications of the actual control equipment. Motion control errors, which can be caused by the time gap between precision control equipment and simulation in applying digital twin technology, can cause hazards such as collisions between hazardous facilities and control equipment. In order to eliminate and control these situations, prior research is needed. Method: Unity 3D is currently the most popular engine used to develop simulations. However, there are control errors that can be caused by time correction within Unity 3D engines. The error is expected in many environments and may vary depending on the development environment, such as system specifications. To demonstrate this, we develop crash simulations using Unity 3D engines, which conduct collision experiments under various conditions, organize and analyze the resulting results, and derive tolerances for precision control equipment based on them. Result: In experiments with collision experiment simulation, the time correction in 1/1000 seconds of an engine internal function call results in a unit-hour distance error in the movement control of the collision objects and the distance error is proportional to the velocity of the collision. Conclusion: Remote decomposition simulators using digital twin technology are considered to require limitations of the speed of movement according to the required precision of the precision control devices in the hardware and software environment and manual control. In addition, the size of modeling data such as system development environment, hardware specifications and simulations imitated control equipment and facilities must also be taken into account, available and acceptable errors of operational control equipment and the speed required of work.

Inter-device Mutual Authentication and Formal Verification in Vehicular Security System (자동차 보안시스템에서 장치간 상호인증 및 정형검증)

  • Lee, Sang-Jun;Bae, Woo-Sik
    • Journal of Digital Convergence
    • /
    • v.13 no.4
    • /
    • pp.205-210
    • /
    • 2015
  • The auto industry has significantly evolved to the extent that much attention is paid to M2M (Machine-to-Machine) communication. In M2M communication which was first used in meteorology, environment, logistics, national defense, agriculture and stockbreeding, devices automatically communicate and operate in accordance with varying situations. M2M system is applied to vehicles, specifically to device-to-device communication inside cars, vehicle-to-vehicle communication, communication between vehicles and traffic facilities and that between vehicles and surroundings. However, communication systems are characterized by potential intruders' attacks in transmission sections, which may cause serious safety problems if vehicles' operating system, control system and engine control parts are attacked. Thus, device-to-device secure communication has been actively researched. With a view to secure communication between vehicular devices, the present study drew on hash functions and complex mathematical formulae to design a protocol, which was then tested with Casper/FDR, a tool for formal verification of protocols. In brief, the proposed protocol proved to operate safely against a range of attacks and be effective in practical application.

Operational Characteristic Analysis of DC Micro-grid with Detail Model of Distributed Generation (분산전원 세부모델을 적용한 DC Micro-grid의 동작특성 분석)

  • Lee, Ji-Heon;Kwon, Ki-Hyun;Lee, Hye-Yeon;Han, Byung-Moon
    • Proceedings of the KIEE Conference
    • /
    • 2008.10c
    • /
    • pp.151-153
    • /
    • 2008
  • DC 마이크로그리드는 태양광과 연료전지와 같은 DC 출력의 분산전원, 풍력이나 가스엔진과 같은 AC 출력의 분산전원이 이차전지나 수퍼커패시터와 같은 에너지 저장장치와 직류로 결합되어 있는 구조로, 최근 급증하고 있는 디지털부하에 고품질, 고신뢰도 전력을 공급하는 새로운 직류배전시스템이다. 본 연구에서는, 먼저 DC 마이크로그리드의 한 시스템 구성을 가정하고, 이들 분산전원과 에너지저장의 컨버터를 제어하는 기법을 제안하였다. 또한 PSCAD/EMTDC 소프트웨어를 사용하여 각각의 분산전원의 세부모델을 구현하고, 이를 DC 마이크로그리드로 구성한 후 분산전원의 생산량, 에너지저장의 저장량, 부하의 소모량, 연계 계통의 공급량을 타당한 시나리오로 가정하여 전체 마이크로그리드의 동작을 분석하였다.

  • PDF

A embodiment of the interface module for feed back control between auto-pilot with water-jet system (오토파일럿과 워터젯시스템의 피드백 제어계 인터페이스 모듈의 구현)

  • Oh, Jin-Seong;Choi, Jo-Cheon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.1108-1111
    • /
    • 2009
  • Auto Pilot is the system which move automatically the vessel through locating operation mode to automatic after entering operating course using a electronic chart or plotter. And water jet is the a propulsion system that make a power to push the vessel through spouting the accelerated water which is absorbed by the hole in the bottom of vessel. The water jet receive the effect of the depth of water lowly, it's acceleration efficiency is higher under high speed and have an advantage on vibrating and floating sound, so it's demand is increasing as new propulsion system. However, the signal systems of auto pilot and water jet are different, we need the system to interface between each system. We designed the interface that efficiently digital feed back control embedded module between auto pilot and water jet system in this paper.

  • PDF