• Title/Summary/Keyword: 디지털 방사선 영상

Search Result 346, Processing Time 0.023 seconds

Ghosting Artifacts in Digital Radiography (디지털 방사선영상에서 고스팅 아티팩트)

  • Jung, Wonhee;Chon, Kwonsu
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.7
    • /
    • pp.377-382
    • /
    • 2014
  • Because of using computer system in the field of medical radiology, many artifacts which can not be seen in film/screen system are being created, especially ghosting artifacts. This artifacts could be yielded by taking advantage of a flat panel Thin-Film Transistor array detector. Ghosting artifacts can be rarely seen in clinical practice when an image that has a high-contrast object within a region of high exposure is quickly followed by another image that puts the high-contrast ghosting image in an area of lower radiation exposure. In this experiment, the ghosting artifacts were minimized for approximately 3 minutes with the unaided eye and almost disappeared for 6 minutes quantitatively between exposures. Moreover, the artifacts were influenced by more tube voltage than current and those depended not upon the number of readout cycles, but upon time.

Grid Angle Optimization for Grid Artifact Reduction in Digital Radiography (디지털 방사선 영상의 그리드 왜곡 제거를 위한 회전 각도의 최적화)

  • Kim, Dong-Sik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.07a
    • /
    • pp.438-439
    • /
    • 2010
  • 산란선을 흡수하여 보다 선명한 x선 영상을 얻기 위하여 산란방지 그리드를 사용하여 투사영상을 얻는데, 이때 그리드로 인한 왜곡이 발생한다. 본 논문에서는 회전된 그리드를 사용하여 투사영상을 얻어서 그리드 왜곡을 제거하는 방법에서, 보다 효율적인 그리드 왜곡 제거를 위한 최적의 그리드 각도를 얻기 위한 min-max 최적화 방법을 제시하였고, 몇 가지 예를 통하여 최적의 그리드 각도를 구하였으며, 실제 x선 영상에 적용하여 그 성능을 비교해 보았다.

  • PDF

Patients Setup Verification Tool for RT (PSVTS) : DRR, Simulation, Portal and Digital images (방사선치료 시 환자자세 검증을 위한 분석용 도구 개발)

  • Lee Suk;Seong Jinsil;Kwon Soo I1;Chu Sung Sil;Lee Chang Geol;Suh Chang Ok
    • Radiation Oncology Journal
    • /
    • v.21 no.1
    • /
    • pp.100-106
    • /
    • 2003
  • Purpose : To develop a patients' setup verification tool (PSVT) to verify the alignment of the machine and the target isocenters, and the reproduclbility of patients' setup for three dimensional conformal radiotherapy (3DCRT) and intensity modulated radiotherapy (IMRT). The utilization of this system is evaluated through phantom and patient case studies. Materials and methods : We developed and clinically tested a new method for patients' setup verification, using digitally reconstructed radiography (DRR), simulation, porial and digital images. The PSVT system was networked to a Pentium PC for the transmission of the acquired images to the PC for analysis. To verify the alignment of the machine and target isocenters, orthogonal pairs of simulation images were used as verification images. Errors in the isocenter alignment were measured by comparing the verification images with DRR of CT Images. Orthogonal films were taken of all the patients once a week. These verification films were compared with the DRR were used for the treatment setup. By performing this procedure every treatment, using humanoid phantom and patient cases, the errors of localization can be analyzed, with adjustments made from the translation. The reproducibility of the patients' setup was verified using portal and digital images. Results : The PSVT system was developed to verify the alignment of the machine and the target isocenters, and the reproducibility of the patients' setup for 3DCRT and IMRT. The results show that the localization errors are 0.8$\pm$0.2 mm (AP) and 1.0$\pm$0.3 mm (Lateral) in the cases relating to the brain and 1.1$\pm$0.5 mm (AP) and 1.0$\pm$0.6 mm (Lateral) in the cases relating to the pelvis. The reproducibility of the patients' setup was verified by visualization, using real-time image acquisition, leading to the practical utilization of our software Conclusions : A PSVT system was developed for the verification of the alignment between machine and the target isocenters, and the reproduclbility of the patients' setup in 3DCRT and IMRT. With adjustment of the completed GUI-based algorithm, and a good quality DRR image, our software may be used for clinical applications.

Optimizing Imaging Conditions in Digital Tomosynthesis for Image-Guided Radiation Therapy (영상유도 방사선 치료를 위한 디지털 단층영상합성법의 촬영조건 최적화에 관한 연구)

  • Youn, Han-Bean;Kim, Jin-Sung;Cho, Min-Kook;Jang, Sun-Young;Song, William Y.;Kim, Ho-Kyung
    • Progress in Medical Physics
    • /
    • v.21 no.3
    • /
    • pp.281-290
    • /
    • 2010
  • Cone-beam digital tomosynthesis (CBDT) has greatly been paid attention in the image-guided radiation therapy because of its attractive advantages such as low patient dose and less motion artifact. Image quality of tomograms is, however, dependent on the imaging conditions such as the scan angle (${\beta}_{scan}$) and the number of projection views. In this paper, we describe the principle of CBDT based on filtered-backprojection technique and investigate the optimization of imaging conditions. As a system performance, we have defined the figure-of-merit with a combination of signal difference-to-noise ratio, artifact spread function and floating-point operations which determine the computational load of image reconstruction procedures. From the measurements of disc phantom, which mimics an impulse signal and thus their analyses, it is concluded that the image quality of tomograms obtained from CBDT is improved as the scan angle is wider than 60 degrees with a larger step scan angle (${\Delta}{\beta}$). As a rule of thumb, the system performance is dependent on $\sqrt{{\Delta}{\beta}}{\times}{\beta}^{2.5}_{scan}$. If the exact weighting factors could be assigned to each image-quality metric, we would find the better quantitative imaging conditions.

Computerized detection of pulmonary nodules in digital chest images (디지털 테스트 영상에서의 폐 노쥴 자동 탐지)

  • Seong, Won;Park, Jong-Won
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.637-639
    • /
    • 2002
  • 일반적으로 방사선 의사들(radialogists)이 폐 노쥴(pulmonary nodule)을 탐지하는 데는 실제적으로 30%의 실패율을 가진다고 알려져 있다. 만약 자동화된 시스템이 체스트 영상에서 의심스런 노쥴들의 위치들을 방사선 의사에게 알려줄 수 있다면 잘못 판단되는 노쥴들의 수를 잠재적으로 줄일 수 있다. 우리는 형태학적 필터들(morphological filters)과 두가지 특징-추출(feature-extraction) 기술들을 포함하는 컴퓨터 자동 처리 시스템을 구현하였다. 본 시스템에서는 첫째로 형태학적 필터 (morphological filtering)처리를 행한다. 이 과정은 원래의 영상에 침식(erosion)과 확장(dilation)을 연이어서 행하는 것으로 처리가 어려운 X 선 영상을 좀 더 다루기 쉬운 상태로 바꿔주는 역할을 하게 된다. 둘째는 일차적으로 노쥴로서 컴퓨터에 선택된 의심 부분에 가해주는 특징-추출 테스트로서 이 작용은 노쥴로 감지되었으나 실제로는 노쥴이 아닌 경우인false-positive 감지들을 줄이기 위해서 사용된다. 그리하여 본 시스템은 노쥴의 정확한 판독이 어려운 폐의 X선 영상에 적용되어 false-positive 들을 효과적으로 줄임으로써 보다 효율적인 폐 노쥴의 탐지를 가능하게 하였다.

  • PDF

Evaluation of Image Quality & Absorbed Dose using MCNPX Simulation in the Digital Radiography System (디지털방사선영상시스템에서 MCNPX 시뮬레이션을 이용한 영상 품질 및 선량평가)

  • An, Hyeon;Lee, Dongyeon;Ko, Sungjin;Kim, Changsoo
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.5
    • /
    • pp.327-335
    • /
    • 2016
  • The study is enforce to study image quality evaluation of condition provide the IEC and combination of clinical conditions each quality of radiation that image quality to assess the conditions provided to IEC in the clinical environment to conduct image quality assessment of the digital radiography system in the detector have environmental limits. First, image quality evaluation was evaluated by measuring the MTF, NPS using four quality of radiation and Using MCNPX simulation lastly DQE make a image quality evaluation after calculating the particle fluence to analyze spectrum quality of radiation. Second, Using MCNPX simulation of four quality of radiation was evaluated absorbed dose rate about electronic 1 per unit air, water, muscle, bone by using Radiation flux density and energy, mass-energy absorption coefficient of matter. Results of evaluation of image quality, MTF of four quality of radiation was satisfied diagnosis frequency domain 1.0 ~ 3.0 lp/mm of general X-ray that indicated 1.13 ~ 2.91 lp/mm spatial frequency. The NPS has added filter, spatial frequency 0.5 lp/mm at standard NPS showed a tendency to decrease after increase. Unused added filter, spatial frequency 0.5 lp/mm at standard NPS showed a certain NPS result value after decrease. DQE in 70 kVp / unuesd added filter(21 mm Al) / SID 150 cm that patial frequency 1.5 lp/mm at standard showed a tendency to decrease after certain value showed. Patial frequency in the rest quality of radiation was showed a tendency to decrease after increase. Results of evaluation of absorbed dose, air < water < muscle < bone in the order showed a tendency to increase. Based on the results of this study provide to basic data that present for the image quality evaluation method of a digital radiation imaging system in various the clinical condition.

Development of a Verification Tool in Radiation Treatment Setup (방사선치료 시 환자자세 확인을 위한 영상 분석 도구의 개발)

  • 조병철;강세권;한승희;박희철;박석원;오도훈;배훈식
    • Progress in Medical Physics
    • /
    • v.14 no.3
    • /
    • pp.196-202
    • /
    • 2003
  • In 3-dimensional conformal radiation therapy (3D-CRT) and intensity-modulated radiation therapy (IMRT), many studies on reducing setup error have been conducted in order to focus the irradiation on the tumors while sparing normal tissues as much as possible. As one of these efforts, we developed an image enhancement and registration tool for simulators and portal images that analyze setup errors in a quantitative manner. For setup verification, we used simulator (films and EC-L films (Kodak, USA) as portal images. In addition, digital-captured images during simulation, and digitally-reconstructed radiographs (DRR) can be used as reference images in the software, which is coded using IDL5.4 (Research Systems Inc., USA). To improve the poor contrast of portal images, histogram-equalization, and adaptive histogram equalization, CLAHE (contrast limited adaptive histogram equalization) was implemented in the software. For image registration between simulator and portal images, contours drawn on the simulator image were transferred into the portal image, and then aligned onto the same anatomical structures on the portal image. In conclusion, applying CLAHE considerably improved the contrast of portal images and also enabled the analysis of setup errors in a quantitative manner.

  • PDF

Convergence and integration study related to development of digital contents for radiography training using dental radiograph and augmented reality (치과방사선사진과 증강현실을 활용한 방사선촬영법 숙련용 디지털 콘텐츠 개발에 대한 융복합 연구)

  • Gu, Ja-Young;Lee, Jae-Gi
    • Journal of Digital Convergence
    • /
    • v.16 no.12
    • /
    • pp.441-447
    • /
    • 2018
  • This study aims to develop digital techniques that enable repeated practice of dental radiography using augmented reality technology. A three-dimensional object was fabricated by superimposing a photograph of an adult model and a computed tomography image of a manikin phantom. The system was structured using 106 radiographs such that one of these saved radiographs is opened when the user attempts to take a radiograph on a mobile device. This system enabled users to repeatedly practice at the pre-clinical stage without exposure to radiation. We attempt to contribute to enhancing dental hygienists' competency in dental radiography using these techniques. However, a system that enables the user to actually take a radiograph based on face recognition would be more useful in terms of practice, so additional studies are needed on the topic.