• Title/Summary/Keyword: 디젤 연료

Search Result 836, Processing Time 0.024 seconds

Hybrid energy system for fuel consumption reduction of smart green building (스마트그린빌딩 에너지 시스템의 연료소모 절감을 위한 하이브리드 에너지 시스템)

  • An, Boguen;Lee, KyungKyu;Choi, Jaeho;Song, Yujin
    • Proceedings of the KIPE Conference
    • /
    • 2014.11a
    • /
    • pp.105-106
    • /
    • 2014
  • 본 논문에서는 디젤발전기와 에너지 저장 시스템, 태양광 발전을 이용한 스마트 그린 빌딩의 하이브리드 에너지 시스템을 제안한다. 빌딩 하이브리드 에너지시스템은 다양한 전력원을 가질 수 있는데 기존의 디젤발전기에 화석연료를 저감할 목적으로 풍력발전시스템이나 태양광발전시스템과 같은 형태의 신재생에너지원들이 연계 운전될 수 있다. 연료소모를 최소화하고 디젤발전기의 느린 출력응답특성으로 인한 계통 전압 불안정화를 보상하기 위해 응답특성이 빠른 배터리와 슈퍼커패시터로 이루어진 에너지저장장치와 태양광발전원과의 연계운전 기술을 제안하고 시뮬레이션 하였다.

  • PDF

A Study on Characteristics of Rice Bran Oil as an Alternative Fuel in Diesel Engine(I) (디젤기관의 대체연료로서 미장유의 특성 연구(I))

  • 오영택;최승훈;김승원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.15-22
    • /
    • 2002
  • Lately, our world is faced with very serious problems related to the increased air pollution of the exhaust emissions from automobiles. In particular, the exhaust emissions of diesel engines are recognized as a main cause which strongly influence environment. Lots of researchers have attempted to develop various alternative fuels to reduce these harmful emissions in diesel engine. The purpose of this investigation is to evaluate the possibility of esterfied rice bran oil for diesel fuel substitution in a naturally aspirated D. 1. diesel engine, and also find means to reduce smoke emissions in esterfied rice bran oil combustion. The smoke emission of esterfied rice bran oil is reduced remarkably in comparison with commercial gas oil, that is, it was reduced approximately 58.2% at 2500rpm. But, power, torque and brake specific energy consumption didn't have no large differences. It was concluded that esterfied rice bran oil can utilize effectively as an alternative and renew- able fuel fur diesel engine.

Data Monitoring System for Activation Analysis Based on Fuel Heater of Diesel Cars (디젤차량용 연료히터의 활성화분석용 데이터 모니터링 장치)

  • Lee, Bo-Hee;Son, Byong-Min;Zhao, Xiang;Yoon, Dal-Hwan
    • Journal of IKEEE
    • /
    • v.18 no.2
    • /
    • pp.179-184
    • /
    • 2014
  • In this paper, we have developed a data monitoring system for activation analysis based on fuel heater of diesel cars. The light oil of diesel engine below a constant temperature be changed to the waxing materials of a semisolid status like a paraffin, and then it may not start. In order to evaluate an engine activation performance, we suggest an engine start time with an change between an extremely low temperature and high temperature, a delay time goes with heater resistor and current and pressure. So, we have developed sensor module system that can obtain the operational status data between fuel line and fuel heater, and evaluate the performance of fuel heater through monitoring of a temperature and pressure. Finally, we can gather the temperature and pressure data of this system with mobile terminal, remotely and propose an utility of this system that can find problems of fuel heater through measured data.

An Analytical Study on Characteristics of a Diesel Injection System (디젤분사계의 특성에 관한 해석적 연구)

  • 장영준;박호준;전충환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.63-74
    • /
    • 1989
  • It is well-known that the fuel injection system if a diesel engine has taken a more important place in understanding of diesel combustion process with combustion chamber. But a diesel fuel injection system has an assembly of many complex and intricate problems such as the desired rate of injection, secondary injection and injection pump etc., in addition to the atomization for ignition and combustion, the penetration and diestribution for proper utilization of air. The analysis is carried out by simplifing and modeling the injection phenomena and dividing into three parts comprising of fuel injection pump, high pressure pipe and fuel injection nozzle. The purpose of this paper is to describe an analytical simulation of the injection system and to speed up the work of developing injection systems for new engines. The effects of important injection parameters as predicted by the present model are found to be in good agreement with experiment. It can be seen that there is an optimal pipe diameter for maximum quantity injected.

  • PDF

A Study on the Effects of Heating of Fuel Oil on Combustion Characteristics and Engine Performance (연료유 가열이 디젤기관의 연소특성 및 기관성능에 미치는 영향에 관한 연구)

  • 고대권
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.25 no.2
    • /
    • pp.82-86
    • /
    • 1989
  • This paper is concerned with the effects of temperature of diesel fuel on combustion characteristics and engine performance in a home-made precombustion diesel engine for small-sized fishing boat. The results may be summarized as follows: 1. The fuel injection timing was delayed with increase in temperature for diesel fuel, and remarkably delayed at low load. 2. The point of maximum pressure was delayed with increase in temperature for diesel fuel, the maximum pressure decreased with increase in temperature for diesel fuel but increased with increase in load. 3. The brake specific fuel comsumption (BSFC) decreased with increase in load, the optimum temperature of the heated fuel was about 15$0^{\circ}C$. 4. The smoke emissions increased with increase in load and temperature for diesel fuel.

  • PDF

Evaluation of Biodiesel Production Systems and Factors Affecting Product Yield (바이오디젤의 생산 공정 비교 및 생성물 수율에 미치는 인자들)

  • Lee, Jong-Man;Lee, Jae-Heung;Cho, Nam-Jun
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.3 no.1
    • /
    • pp.183-192
    • /
    • 2011
  • In recent years there has been an increasing focus on global warming and the exhaustion of resources caused by the heavy consumption of fossil fuels. In order to resolve these issues, biomass has gained much attention as a source of renewable energy. One area of particular interest has been the production of biodiesel. The biodiesel produced by the transesterification of vegetable oils, animal fats and waste cooking oils is expected to be one of the eco-friendly biomass-based alternatives to fossil fuels. This paper reviews some of the recent findings for the effective biodiesel production system, together with several factors affecting the biodiesel yield.

  • PDF

Effect of Fuel Injection Timing on the Performance and Exhaust Emissions in IDI Diesel Engine Using Biodiesel Fuel (바이오디젤유를 사용하는 디젤기관에서 연료분사시기 변화에 따른 기관성능 및 배기배출물 특성)

  • 유경현;오영택
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.76-82
    • /
    • 2004
  • Biodiesel fuel(BDF) which is easily produced from vegetable oils such as soybean oil and rice bran oil can be effectively used as an alternative fuel in diesel engine. However, BDF can affect the performance and emissions in diesel engine because it has different chemical and physical properties from diesel fuel. To investigate the effects of injection timing on the characteristics of performance and emissions with BDF in IDI diesel engine, BDF derived from rice bran oil was considered in this study. The engine was operated at six different injection timings and six loads at a single engine speed of 2000rpm. When the injection timing was retarded, better results were obtained, which may confirm the advantage of BDF. The reduction of NOx and smoke was observed for a 2$^{\circ}$ retarded injection timing without any sacrifice of BSEC.

Current technologies for abatement of pollutants emitted from diesel vehicle (디젤자동차의 배기가스 저감기술)

  • 김상환
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.19-31
    • /
    • 1993
  • 디젤자동차는 가솔린 자동차에 비하여 연료소비효율(fuel economy)이 20-30% 정도 높고 고출력을 낼수 있어 이의 수요가 증가하고 있다. 본 고에서는 디젤자동차에서 배출되는 수많은 화학물질중에서 문제가 되고 있는 입자상물질, NOx 및 SO$_{2}$를 제거하는 기술에 대하여 살펴본다. 이러한 오염물질의 저감을 위하여는 배기가스 재순환, 분사시기의 조절, 인터쿨링 같은 연소기술의 개선과 유황분이 적고, 방향족화합물의 함량이 적은 청정연료를 사용하여 어느 수준까지는 목적을 달성할 수 있다. 1. 디젤자동차 배출허용기준. 2. 배기가스 정화기술. 2.1 트랩기술(trap technology). 2.2 재생기술(regeneration technology). 2.3 제어 및 센서기술(control and sensor technology)

  • PDF