• Title/Summary/Keyword: 디젤차량

Search Result 182, Processing Time 0.023 seconds

Measurement and Discrimination Method for the Evaluation of Aero-Pulsation Noise Generated by the Turbocharger System (터보차저의 공기맥동음 평가를 위한 측정 및 판별법)

  • Kim, Jae-Heon;Lee, Jong-Kyu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.7
    • /
    • pp.361-365
    • /
    • 2007
  • Aero-pulsation noise, generally caused by geometric asymmetry of a rotating device, is one of considerable sources of annoyance in passenger cars using the turbocharged diesel engine. Main source of this noise is the compressor wheel in the turbocharger system, and can be reduced by after-treatment devices such as silencers, but which may increase the manufacturing cost. More effective solution is to improve the geometric symmetry over all, or to control the quality of components by sorting out inferior ones. The latter is more simple and reasonable than the former in view of manufacturing. Thus, an appropriate discrimination method should be needed to evaluate aero-pulsation noise level at the production line. In this paper, we introduce the accurate method which can measure the noise level of aero-pulsation and also present its evaluation criteria. Besides verifying the reliability of a measurement system - a rig test system-, we analyze the correlation between the results from rig tests and those from vehicle tests. The gage R&R method is carried out to check the repeatability of measurements over 25 samples. From the result, we propose the standard specification which can discriminate inferior products from superior ones on the basis of aero-pulsation noise level.

Core Technology Development of Low Temperature Fluidity Test System with Composited Fuel Filter (통합연료필터의 저온유동성 시험장치 핵심기술개발)

  • Yun, Suck-Chang;Zhao, Xiang;Yoon, Dal-Hwan
    • Journal of IKEEE
    • /
    • v.18 no.3
    • /
    • pp.420-426
    • /
    • 2014
  • In this paper, we have implemented the low temperature fluidity test system with the composited fuel filter and heater, which has tested the low temperature fluidity of gasoline, an engine start time, the consumption of electricity and power to evaluate the system performance. The test condition have used the diesel fuel, the normal temperature, the diesel fuel supply pressure $3.4kgf/cm^2$ at $-20{\sim}-30^{\circ}C$, the fuel supply quantization 60 l/H, the setting current 30 A and the voltage $13V_{dc}$. In order to simulate the operation of diesel fuel filter, we will establish the composited fuel filter into test jig, and be filled with chamber tank and filter by a constant flow quantization and pressure. After these, it shall be cold for setting time. And then we have measured the consumption current and power of heater, an operating time and pressure of filter.

An Experimental Study on Braking Thermal Damage of Brake Disk Cover (브레이크 디스크 커버의 제동 열손상에 대한 실험적 연구)

  • Ko, Kwang-Ho;Moon, Byung-Koo
    • Journal of Digital Convergence
    • /
    • v.13 no.11
    • /
    • pp.171-178
    • /
    • 2015
  • The disk cover is installed to protect brake disk and calliper and it's removed right before delivering to customers. The temperature of disk cover was measured driving test vehicles(2000cc, diesel) in this study. The highest temperature measured for the driving test(120km/h-braking(0.3G)-stop-120km/h-braking(0.5G)-stop) was $260{\sim}270^{\circ}C$ in the upper part of the disk cover and the temperature varied considerably around the disk cover. It can be inferred from this temperature distribution around the cover that the major heat transfer from hot disk to cover was through convection. In other words, the hot air generated by braking friction moved up to the upper part of the disk cover. And only the upper area of the disk cover was melted down during this driving test. The thickness of disk cover was increased to 1.0mm from 0.7mm and 1 paper of masking tape was pasted in the upper region of the disk cover. Then the cover endured the heated air formed by braking friction during the driving test.

On-road Investigation of PM Emissions according to Vehicle Fuels (Diesel, DME, and Bio-diesel) (Diesel, DME, Bio-diesel 연료가 실제 도로 주행 조건에서 입자상물질 배출에 미치는 영향 파악)

  • Lee, Seok-Hwan;Kim, Hong-Seok;Park, Jun-Hyuk;Cho, Gyu-Baek
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.88-97
    • /
    • 2012
  • To measure the traffic pollutants with high temporal and spatial resolution under real conditions, a mobile emission laboratory (MEL) was designed. The equipment of the mini-van provides gas phase measurements of CO, NOx, CO2 and THC (Total hydrocarbon), and number density & size distribution measurements of fine and ultra-fine particles by a fast mobility particle sizer (FMPS) and a condensation particle counter (CPC). The inlet sampling port above the bumper enables the chasing of different type of vehicles. This paper introduces the technical details of the MEL and presents data from the experiment in which a MEL chases a city bus fuelled by diesel, DME and Bio-diesel. The dilution ratio was calculated by the ratio of ambient NOx and tail-pipe NOx. Most particles from the bus fuelled by diesel were counted under 300 nm and the peak concentration of the particles was located between 30 and 60 nm. However, most particles in the exhaust of the bus fuelled by DME were nano-particles (diameter: less than 50 nm). The bus fuelled by Bio-diesel shows less particle emissions compare to diesel bus due to the presence of the oxygen in the fuel.

A Study on Optimization of Noise Reduction of Auxiliary Power Unit for Military Tracked Vehicle (군용 궤도장비 보조동력장치의 소음저감 최적화 연구)

  • Lee, Ju-Seung;Kim, Byeong-Ho;Kim, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.336-342
    • /
    • 2018
  • Noise reduction is an important issue in auxiliary power unit(APU) of tracking equipments for using military. In this study, we designed and tested reduction methods of structure borne noise and airborne source noise at the auxiliary power unit. From the bench test results, it is found that the effect of noise reduction is about 22 dB(A) if the silencer is redesigned, which is the rescue structure. However, the influence of noise reduction by air is insufficient. In addition, it is confirmed that the effect of noise reduction is excellent when structure borne noise reduction is applied to the vehicle. We expected that the test results of this study are used as basic data to reduce the noise of other tracking equipment developed later.

A Study on the Characteristics of the Oil-free Turbocharger for Diesel Engine Vehicles (디젤 엔진 차량의 무급유 터보차져의 성능 평가에 관한 연구)

  • Park, Dong-Jin;Kim, Chang-Ho;Lee, Yong-Bok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.47-55
    • /
    • 2008
  • Turbocharger has a main purpose on recycling of the exhaust gas from the engine cylinder. On the basis of the facility characteristics, the turbocharger supported on floating ring bearings has some problems such as the large volume, oil supplement for lubrication and high power loss due to high operating torque. The air foil bearing has been studied as the bearing element to be able to alternate the floating ring bearing without the problems of the floating ring bearing. In this study, the air foil bearing has 2 parts; journal and thrust bearings, and the test facility consists of the engine, exhaust and intake parts. In addiction, the specification of the turbocharger follows a small turbocharger for SUV engine. The engine speed is varied from 750 (idle rpm) to 2,500 rpm and then, the rotating speed of the turbocharger rotor is accelerated from 0 to 100,000 rpm. From those experiments, the comparison between the performances of the air foil bearing and floating ring bearing is conducted and the results show that the air foil bearing has less power loss, maximum 770 watt, than the floating ring bearing, maximum 5,110 watt. This result verifies that the air foil bearing is more efficient and able to output more power under the same condition of the input power.

Cytotoxicity of Diesel Exhaust Particles from Various Vehicles toward Macrophage Cells (국내 디젤 차량 배기 입자가 쥐 대식세포에 미치는 세포독성 평가)

  • Lee, Jang-Han;Lee, Yong-Kwon;Lee, Ji-Young;Lee, Seung-Bok;Kim, Sun-Hwa;Bae, Gwi-Nam;Lee, Hak-Sung;Lim, Cheol-Soo;Chung, Nam-Hyun
    • Environmental Analysis Health and Toxicology
    • /
    • v.25 no.2
    • /
    • pp.111-120
    • /
    • 2010
  • DEPs (diesel exhaust particles) like any other particles can be also inhaled into lung to participate in a damaging reaction to the organ. Possible damages might be apoptosis and inflammatory responses to the cells in respiratory track. The aim of this study was cytotoxicity evaluation of DEPs from five in-use diesel vehicles using a murine macrophage cell (RAW 254.7). We found that most DEPs have a considerable cytotoxicity compared to the control and SRM 2975. When measured by MTT assay and extents of apoptosis, DEPs of two highmileage vehicles had higher toxicity than those of the other three low-mileage vehicles tested. Although mRNA expression level of TNF-${\alpha$ somewhat explains the trend of cytotoxicity and apoptosis, that of IL-1$\beta$ did not. Correlation studies among the extents of MTT assay, apoptosis, and TNF-$\alpha$ expression showed that the extents between apoptosis and TNF-$\alpha$ expression was most highly correlated (r=0.96). These results suggest that cytotoxicity of various DEPs could be compared easily by measuring the extent of apoptosis or TNF-$\alpha$ expression by DEPs.

Development of Estimation Methods of Pollutant Emissions from Railroad Diesel Rolling Stocks (철도디젤차량에서 배출되는 오염물질의 배출량 산정방법 개발)

  • 박덕신;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.4
    • /
    • pp.539-553
    • /
    • 2004
  • Up to the present time, many methods to estimate emissions from a particular diesel engines have wholly depended on the quantity of diesel fuel consumed. Then, the recommended emission factors were normalized by fuel consumption, and further total activity was estimated by the total fuel consumed. One of main purposes in the study is newly to develop emission factors for the railroad diesel rolling stock (RDRS) and to estimate a total amount of major gaseous pollutants from the RDRS in Korea. Prior to develop a Korean mode emission factor. the emission factor from the USEPA was simply applied for comparative studies. When applying the USEPA emission factors, total exhaust emissions from the RDRS in Korea were estimated by 28,117tons of NOx, 2,832.3tons of CO, and 1,237.5tons of HC, etc in 2001. In this study, a emission factor for the RDRS, so called the KoRail mode (the Korean Railroad mode) has been developed on the basis of analyzing the driving pattern of the Gyeongbu-Line especially for the line-haul mode. Explicitly to make the site specific emission factors, many uncertainty problems concerning weighting factors for each power mode, limited emission test, incomplete data for RDRS, and other important input parameters were extensively examined. Total exhaust emissions by KoRail mode in Korea were estimated by 10,960tons of NOx, and 4,622tons of CO, and so on in the year of 2001. The emissions estimated by the USEPA mode were 2.6 times higher for NOx, and 1.6 times lower for CO than those by the KoRail mode. As a conclusion, based on the emission calculated from both the USEPA mode and the KoRail mode, the RDRS is considered as one of the significant mobile sources for major gaseous pollutants and thus management plans an(1 control strategies for the RDRS must be established to improve air quality near future in Korea.

Evaluation of Environmental Benefit and Cost for Management of Air Quality - [Based on Fine Dust Pollution on Donghae Harbor] (공기질 관리에 관한 환경 비용편익 연구[동해항만 주변 미세먼지오염을 기준])

  • Kim, Eun-Joo;Lee, Choon-Gil;Kim, Ji-Hyun;Park, Young-Koo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.561-569
    • /
    • 2012
  • Study attempts to evaluate the environmental cost and benefit for management of particulate matters of Donghae harbor in Gangwondo. The level of fine dust suspended in the vicinity of the harbor was quite high, exceeding the national standard ($100{\mu}g/m^3$) depending on the places. The test field harbor deals with lots of limestone and coal, so that fine particulates could be generated while loading it and unloading. It was estimated that the direct handling of cargos might produce 12 tons of PM10(Particulate Matters of $10{\mu}m$) a year. In addition, heavy vehicles for transportation of various cargos including raw materials emit huge amount of diesel soots and cause to redispersion of road dust. The local government spends more than 2 billion won every year, and it contributes to reduce the atmospheric dust. According to the prediction of cost to benefit, it will present the effectiveness in 720 % maximum and at least 240 %.

Environmental and economic life cycle analysis of hydrogen as Transportation fuels (자동차 연료로서 수소의 전과정 환경성/경제성 분석)

  • Lee, Ji-Yong;Cha, Kyoung-Hoon;Yu, Moo-Sang;Lee, Soo-Yeon;Hur, Tak;Lim, Tae-Won
    • New & Renewable Energy
    • /
    • v.3 no.2 s.10
    • /
    • pp.31-39
    • /
    • 2007
  • 화석연료의 사용으로 인한 자원고갈과 지구온난화 영향 그리고 에너지 안보문제의 해결을 위해 세계 각국들은 대체에너지 개발에 많은 노력을 기울이고 있다. 그 중 수소는 다양한 경로를 통해 생산 가능하고, 수송연료로 사용 시, 유해 물질이 거의 배출되지 않는다는 장점 때문에 가장 주목받는 대체 에너지원이다. 현재는 수소생산 기술개발을 통해 상업화시기를 앞당기려고 하는 수소에너지 시대의 진입시점이라 할 수 있다. 그러나 수소는 생산경로에 따라 다양한 환경성 및 경제성 결과를 도출 할 수 있기 때문에 다양한 평가가 요구된다. 본 연구에서는 국내 수소생산 방식으로 개발/상용화되어있는 Natural Gas Steam Reforming (NGSR), Naphtha Steam Reforming (Naphtha SR), Water Electrolysis (WE)에 대하여, Life Cycle Assessment (LCA)와 Life Cycle Costing Analysis (LCCA) 방법을 사용하여, 수소경로 전반에 대한 즉, 원료채취부터 자동차로 주행하였을 때까지의 각 대상 수소경로의 환경성과 경제성을 평가하였다. LCA와 LCCA 결과는 Naphtha SR과 NGSR 수소경로에서 지구온난화와 화석자원 소모 부문 모두 기존연료 (가솔린, 디젤)와 비교해서 개선효과가 뚜렷하게 나타났으나, WE 수소경로는 오히려 환경부하가 증가되는 것으로 나타났다. 또한 경제성 측면에서는, 수소 판매 시 가솔린과 동일한 연료세율을 부과하더라도 수소가 가솔린에 비해 가격경쟁력을 확보하게 되는데, 이는 주행 시 수소자동차의 연비가 기존 차량에 비해 월등히 좋기 때문에 연료비용의 이점 때문이다. 만약, 수소에 연료세를 부과하지 않는 다면, Naphtha SR로 생산하여 유통한 수소가 수송연료로서 가장 뛰어난 비용효율성을 갖는 것으로 나타났다.

  • PDF