• Title/Summary/Keyword: 디스크 형상

Search Result 145, Processing Time 0.031 seconds

Numerical Analysis on Cutting Power of Disc Cutter with Joint Distribution Patterns (절리분포 양상에 따른 디스크커터의 절삭력에 관한 수치해석적 연구)

  • Lee, Seung-Joong;Choi, Sung-O.
    • Tunnel and Underground Space
    • /
    • v.21 no.3
    • /
    • pp.151-163
    • /
    • 2011
  • The LCM test is one of the most powerful and reliable methods for designing the disc cutter and for predicting the TBM (Tunnel Boring Machine) performance. It has an advantage to predict the actual load on disc cutter from the laboratory test on the real-size large rock samples, however, it also has a disadvantage to transport and/or prepare the large rock samples and to need an extra cost for experiment. Moreover it is not easy to execute the test for jointed rock mass, and sometimes the design model estimated from the test can not be applied to the real design of disc cutter. In order to break this critical point, lots of numerical studies have been performed. PFC2D can simulate crack propagation and rock fragmentation effectively, because it is useful in particle flow analysis. Consequently, in this study, the PFC2D has been adopted for numerical analysis on cutting power of disc cutter according to the different angle of joint, the different direction of joint, and the different space of joint with jointed rock mass models. From the numerical analyses, it was concluded that the bigger cutting power of disc cutter was needed for reverse cutting direction to joint rather than for forward direction, and the cutting power of disc cutter was increased with decreasing the dip angle of joint and decreasing the space of joints in reverse cutting direction. The more precise numerical model for disc cutter can be developed from comparison between the numerical results and LCM test results, and the resonable guideline is expected for prediction of TBM performance and disc cutter.

Numerical study on rock fragmentation by TBM disc cutter (TBM 디스크 커터의 암석절삭에 관한 수치해석적 연구)

  • Cho, Jung-Woo;Yu, Sang-Hwa;Jeon, Seok-Won;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.2
    • /
    • pp.139-152
    • /
    • 2008
  • A series of numerical experiments were carried out to simulate the rock cutting behavior by TBM disc cutter in a given took condition. AUTODYN-3D, a commercial program capable of simulating three-dimensional dynamic failure, was utilized to carry out the numerical tests over four different disc cutter spacing conditions. After modelling three-dimensional geometries of disc cutter and rock specimen, the linear cutting tests by a disc cutter were simulated for eight different types of rocks. The numerical result, that is the optimum cutter spacing for isotropic rocks had the good agreements with those from linear cutting test. However, for relatively anisotropic or jointed rocks, the specific energy obtained from the numerical tests was almost two-times bigger than the real linear cutting results. Therefore, to simulate cutting procedures for anisotropic rocks realistically, further studies would be necessary.

  • PDF

Vortex sheddings and Pressure Oscillations in Hybrid Rocket Combustion (하이브리드로켓 연소실의 와류발생과 연소압력 진동)

  • Park, Kyungsoo;Shin, Kyung-Hoon;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.40-47
    • /
    • 2013
  • The similarity in internal flow of solid and hybrid rocket suggests that hybrid rocket combustion can be susceptible to instability due to vortex sheddings and their interaction. This study focuses on the evolution of interaction of vortex generated in pre-chamber with other types of vortex in the combustor and the change of combustion characteristics. Baseline and other results tested with disks show that there are five different frequency bands appeared in spectral domain. These include a frequency with thermal lag of solid fuel, vortex shedding due to obstacles such as forward, backward facing step and wall vortices near surface. The comparison of frequency behavior in the cases with disk 1 and 3 reveals that vortex shedding generated in pre-chamber can interact with other types of vortex shedding at a certain condition. The frequency of Helmholtz mode is one of candidates resulting to a resonance when it was excited by other types of oscillation even if this mode was not discernable in baseline test. This selective mechanism of resonance may explain the reason why non-linear combustion instability occurs in hybrid rocket combustion.

Optimal Design of the Steel Wheel's Disc Hole Using Approximation Function (근사함수를 이용한 스틸휠의 디스크 홀의 최적화)

  • 임오강;유완석;김우현;조재승
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.1
    • /
    • pp.105-111
    • /
    • 2003
  • Wheel for passenger car support the car weight with tires, and they transmit rolling and braking power into the ground. Whittling away at wheel weight is more effective to boost fuel economy than lighting vehicle body structure. A shape of hole in disk is optimized for minimizing the weight of steel wheel. Pro/ENGINEER program is used for formulating the design model, and ANSYS package is selected for analyzing the design model. It has difficulties to interface these commercial software directly. For Combining both programs, response surface methodology is applied to construct approximation functions for maximum stresses and maximum displacements are obtained by full factorial design of five levels. This steel wheel is modeled in 14-inch diameter of rim, and wide parameter of hole in disk is only selected as design variable for reducing the weight of steel whee. PLBA(Pshenichny-Lim-Belegundu-Arora) algorithm, which used the second-order information in the direction finding problem and uses the active set strategy, is used for solving optimization problems.

Fracture Properties of High Strength Concrete Disk with Center-Crack (중앙에 노치가 있는 고강도 콘크리트 디스크의 파괴특성)

  • 진치섭;김희성;박현재;김민철
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.161-167
    • /
    • 2001
  • It is difficult to obtain accurate fracture toughness values using three point bending test(TPB) proposed by RILEM committees because the shape of load-deflection curve is irregular and final crack propagation occurs after some slow stable cracking. However, fracture toughness is easily obtained from crack initiation load in the disk test. In this paper, the fracture properties of high strength concrete disks with center-crack was investigated. For this purpose, the experimental results were compared with the results by finite element analysis(FEA). And the experimental fracture locus was compared with theoretical fracture locus. Also, the results of fracture properties for the degree of concrete strength are presented. It is concluded from this study that results from FEA with maximum stress theory were compared well with the results from experiment. And the degree of concrete strength was contributed to the crack initiation load and fracture toughness, but was not contributed to the failure angle. Also, The discrepancy of fracture locus between the maximum stress theory and the experiment for concrete is considered to depend upon a large energy requirement for inducing the mixed-mode and sliding mode fractures.

Analytical Study of High Speed Railway Braking Disc-hub for Enhancement of Cooling Performance (냉각 성능 향상을 위한 고속철도 제동 디스크 허브의 해석 연구)

  • Lee, Yong-Woo;Kim, Jang-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.199-207
    • /
    • 2021
  • This study aimed to improve the performance of the KTX (Korea Train Express) brake system. To develop a braking disc-hub for the high-speed rail, the model performance was analyzed by finite element analysis, and the analysis results were verified using the braking test results. In addition, heat transfer analysis, thermal stress analysis, natural frequency analysis, and static analysis were conducted to examine the mechanical performance of the braking system. By deriving the design factors and conducting parametric analyses according to the shape of the hub, this study derived the optimal specifications that could improve heat dissipation and reduce weight. The cooling efficiency and structural performance of the optimization model were improved during braking compared to the existing model. It is expected that the design verification will be carried out through analyses of the optimal specifications so that it can be used in the development of brakes in railway vehicles and motor vehicles.

An Experiment Study on Spraying Characteristics of Swirl Disc Type Nozzles (디스크형 노즐의 분무특성에 관한 실험적 연구)

  • 곽현환;이중용;김영주;장금송
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2003.02a
    • /
    • pp.90-96
    • /
    • 2003
  • 약액의 분무입경, 분무각, 분무량은 방제의 효율성과 관련된 중요한 요소로서, 노즐의 형상 설계는 이러한 요소를 결정하는 것에 큰 영향을 준다. 특히 비교적 낮은 압력에서 분무가 되어야 하는 배부식 방제기에서 노즐의 역할은 더욱 커지는데, 노즐의 성능 향상은 분무를 원활하게 하여 농약 사용량을 줄이고, 또한 무화 압력을 낮추어 작업의 편리성을 도모하며, 에너지 절감 효과도 기대 할 수 있다. (중략)

  • PDF

Structural Durability Analysis due to Hole Configuration Variation of Bike Disc Brake (자전거 디스크 브레이크 구멍 형상 변화에 따른 구조적 내구성 해석)

  • Han, Moonsik;Cho, Jaeung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.5
    • /
    • pp.44-49
    • /
    • 2014
  • As expansion and contraction of bike disk brake are happened continuously by temperature at repeated urgent braking. In this study, 3 kinds of model are designed according to configurations of holes and thermal durabilities on bike disk brake are investigated by comparing 3 models through temperature and thermal analyses. Maximum thermal stress happened at the disk contacted with pad and the connection part fixing disk rotor. Instead of initial state, the temperature is uniformly distributed at transient state. As the area of hole at disk rotor face becomes wider, thermal stress becomes lower at the initial state. On the other hand, in case the number of holes increases, thermal stress becomes lower at the elapsed time of 100 seconds. The thermal durability of bike disk brake can be improved by applying this study result with configurations of holes.

Design Procedure and Analysis of Ramp Profile in SFF HDD (초소형 하드디스크에서 램프 형상 분석 및 설계 프로세스 연구)

  • Lee, Yong-Hyun;Park, Kyoung-Su;Park, No-Cheol;Yang, Hyun-Seok;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.384-387
    • /
    • 2006
  • Vertical L/UL (Load/Unload) velocity is very important parameter to determine the L/UL performance, and the vertical velocity is determined by the actuator velocity and the ramp profile. However, it is not easy to precisely control the actuator rotating velocity during the L/UL process. Especially in emergency parking, servo system doesn't operate, it is impossible to control an actuator velocity. Then, the vertical unloading velocity depends on only ramp profile. The ramp height and the sliding length for L/UL process in SFF (Small Form Factor) HDD are restricted due to slimness and small media. For these reasons, it is very difficult to design the ramp profile in SFF HDD. Therefore, this study analyzes the unloading dynamic characteristics for various ramp profiles and makes the thesis for ramp profile design.

  • PDF

Design Procedure and Analysis of Ramp Profile in SFF HDD (초소형 하드디스크에서 램프 형상 분석 및 설계 프로세스 연구)

  • Lee, Yong-Hyun;Park, Kyoung-Su;Park, No-Cheol;Yang, Hyun-Seok;Park, Young-Pil
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.2
    • /
    • pp.150-155
    • /
    • 2006
  • Vertical L/UL (Load/Unload) velocity is very important parameter to determine the L/UL performance, and the vertical velocity is determined by the actuator velocity and the ramp profile. However, it is not easy to precisely control the actuator rotating velocity during the L/UL process. Especially in emergency parking, servo system doesn't operate, it is impossible to control an actuator velocity. Then, the vertical unloading velocity depends on only ramp profile. The ramp height and the sliding length for L/UL process in SFF (Small Form Factor) HDD are restricted due to slimness and small media. For these reasons, it is very difficult to design the ramp profile in SFF HDD. Therefore, this study analyzes the unloading dynamic characteristics for various ramp profiles and makes the thesis for ramp profile design.

  • PDF