• Title/Summary/Keyword: 디스크 두께변화

Search Result 37, Processing Time 0.021 seconds

플라잉디스크의 단면 형상에 따른 공력 특성 연구

  • Kim, Tae-Uk;Park, Da-Un
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.628-631
    • /
    • 2016
  • 본 연구에서는 플라잉디스크의 윗면 곡률과 끝단두께에 따른 공력특성의 변화 및 유동 흐름을 EDISON_CFD를 통해 해석하고자 한다. 플라잉디스크는 받음각이 증가할수록 윗면 표면에서는 박리 거품이 발생하게 되고 아랫면에서 윗면으로 올라 갈려는 유동의 흐름이 발생하게 되어 뒷전과 후류에서 거대한 박리 거품이 발생하게 되어 공력특성 및 유동흐름에 큰 변화를 주게 된다. 총 5가지의 형상에 대해서 받음각을 $0^{\circ}{\sim}25^{\circ}$까지 마하수 0.0588, 해석모델은 KFLOW에서 k-w SST를 레이놀즈수 $3.78{\times}10^5$을 조건으로 각 형상의 공력특성과 유동의 흐름의 비교를 분석하였다. 그 결과 윗면의 곡률이 증가 할수록 앞전박리가 활발해지고, 끝단두께가 두꺼워 질수록 뒷전박리가 활발해진다. 이로 인해 곡률은 완만할수록 두께는 얇을수록 양력계수와 실속각을 증가 시킬 수 있다.

  • PDF

An Experimental Study on Brake Judder of Braking on Vehicle (실차 상태에서의 제동시 이상떨림 현상에 관한 실험적 연구)

  • Hong, Il-Min;Lee, Won-Sub;Lee, Jong-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.5
    • /
    • pp.338-345
    • /
    • 2002
  • The study presents a new testing and analysis method for brake judder on vehicle. For the identification of the excitation mechanism of a brake judder, it is necessary to measure the dynamic brake disc geometry during braking on vehicle. The non-contact sensor system was used to monitor the brake disc geometry. Brake torque variation (BTV) caused by disc thickness variation (DTV) is the primary excitation for brake judder. The mechanical effects generating BTV are linked not only to initial manufacturing tolerances but also to uneven wear. Therefore, the brake disc geometry should be strictly managed to initial condition. The aim of this study has been to measure the dynamic DTV and runout on vehicle and analyze the influence of test parameters on brake judder and compare the disc component with vehicle matching about the DTV Profile. As a result of this study, The amplitude of brake judder is proportional to vehicle speed and fluid pressure fluctuation on braking. The major sources of brake judder are directly related to disc thickness variation and side runout variation of corner assembly (disc, hub. bearing).

Stamping analysis of automotive wheel disc (자동차용 휠 디스크 스탬핑 해석)

  • 김주성;민홍기
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.26-31
    • /
    • 1992
  • 본 연구에서는 ABBAQUS/EXPLICIT CODE를 이용하여 자동차용 휠 디스크의 성형성을 파악하기 위한 모델링 방식과 컴퓨터 시뮬레이션의 결과인 스프링백, 잔류응력, 두께 변화, 변형률 등을 소개하기로 한다. 컴퓨터 시뮬레이션을 휠 디스크 스탬핑에 이용한 경우 스탬핑시 발생하는 여러현상을 쉽게 예측할 수 있으며, 또한 금형의 Geometry 결정 및 홀더와 펀치의 작용하중 등 금형 설계시 요구되는 데이타 확보가 매우 용이하다.

  • PDF

Investigation of the Characteristics of Lubricant in Computer Hard Disk by Using Surface Analysis Technique (표면 분석을 이용한 컴퓨터 하드디스크용 윤활제의 특성 연구)

  • 조남철;남인탁
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.5
    • /
    • pp.263-270
    • /
    • 1999
  • The characteristics of lubricant for computer hard disk was investigated by surface analysis technique. The bonding state between carbon and lubricant is analysed to indentify the origin of adhesion. It is found that the thickness of lubricant is increased as pulling-up speed becomes faster and lubricant concentration is increased. The dominant surface contaminants on carbon overcoat are identified with C-OH and CO. The bond strength between carbon and lubricant is enhanced with heat treatment.

  • PDF

Fracture Toughness of a Center Notched Concrete Disk (중앙에 노치가 있는 콘크리트 디스크의 파괴인성)

  • Park Hyun-Jae;Jang Hee-Suk;Lee Seung-Hoon;Jin Chi-Sub
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.851-858
    • /
    • 2004
  • Purpose of this paper is to determine the appropriate size of a center notched disk specimen for mode I fracture toughness $K_{IC}$. For this purpose, mode I test results with various sizes of center notched disk were compared with the RILEM three-point-bend test ones. Compressive strength of concrete used in this paper was 44.9 MPa. Diameters of 200, 300, 400 mm, thickness of 75, 100, 125 mm, and notch length ratios an of 0.3, 0.4, 0.5, 0.6 were used for the mode I disk test. Also, diameter of 300mm thickness of 100mm, and notch length ratios a/R of 0.3, 0.4, 0.5, 0.6 were used for the mixed mode disk test. Mixed mode stress intensity factors were investigated by changing notch angles for the disk specimen. Stress intensity factors of a center notched disk were calculated with the various methods for comparison. From the test results, mode I fracture toughness calculated from the disk specimen with diameter of 300 mm, thickness of Inn and notch length ratio a/R of 0.5 was very similar to the RILEM three-point-bend test ones. And it is verified that stress intensity factors for mixed mode can be easily calculated with the disk specimen.

An Experimental Study on Braking Thermal Damage of Brake Disk Cover (브레이크 디스크 커버의 제동 열손상에 대한 실험적 연구)

  • Ko, Kwang-Ho;Moon, Byung-Koo
    • Journal of Digital Convergence
    • /
    • v.13 no.11
    • /
    • pp.171-178
    • /
    • 2015
  • The disk cover is installed to protect brake disk and calliper and it's removed right before delivering to customers. The temperature of disk cover was measured driving test vehicles(2000cc, diesel) in this study. The highest temperature measured for the driving test(120km/h-braking(0.3G)-stop-120km/h-braking(0.5G)-stop) was $260{\sim}270^{\circ}C$ in the upper part of the disk cover and the temperature varied considerably around the disk cover. It can be inferred from this temperature distribution around the cover that the major heat transfer from hot disk to cover was through convection. In other words, the hot air generated by braking friction moved up to the upper part of the disk cover. And only the upper area of the disk cover was melted down during this driving test. The thickness of disk cover was increased to 1.0mm from 0.7mm and 1 paper of masking tape was pasted in the upper region of the disk cover. Then the cover endured the heated air formed by braking friction during the driving test.

Test and Diagnostics Methods for Judder Vibration of the Brake System (자동차 제어장치의 져더 진동 측정 및 진단 방법)

  • 강태원;임상규
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.613-620
    • /
    • 1999
  • Brake judder{or cold judder) caused by the disc thickness variation(DTV) is investigated experimentally, This cold judder is often perceived by steering wheel vibration, brake pedal pulsation, and vehicle body vibration. In this paper, how the DTV profile affects the vibration characteristics of vehicle body is shown by order tracking analysis(OTA) and operational vibration analysis(OVA) The tri-axial vibrations are measured at the knuckle, lower rm, and the body side of the lower arm. Also, measured are the wheel speed and the detail DTV profile. The interpretations of OTA results in three directions of tested vehicle indicate the relative importance in the contribution of the run-out and the DTV to the judder vibration. Also, the OVA results show the prominent vibration amplitude of the lower arm in the direction of the vehicle movement. in which the second order of wheel speed is dominant. These results could be used to diagnose the judder problem and to establish the correction methods.

  • PDF

Numerical Study on Sealing Effectiveness Changes with Increased Turbine Rotor Rim Seal Thickness (가스터빈 회전부 림 씰 두께 증가에 따른 씰링 효율 변화에 대한 수치해석 연구)

  • Yoon, Taedoo;Choi, Seungyeong;Kim, Taehyun;Park, Hee Seung;Cho, Hyung Hee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.1
    • /
    • pp.38-46
    • /
    • 2022
  • One of the main goal of gas turbine rim seal research is to prevent thermal damage at rotor-stator disk by preventing hot gas of main flow in turbine passage. To increase sealing performance, several studies related to the improvement of rim seal configuration have been conducted. In addition, research based on actual operating condition is needed in order to apply effective turbine rim seal configuration. In this study, numerical simulation was conducted with variation of rotor rim seal thickness. Radial and axial expansion cases were tested numerically in this study. As a result, the cases showed different pressure distribution, sealing performance and flow characteristics according to the amount of secondary flow.

Thermo-Elastic Analysis, 3-Dimensional Stress Analysis and Design of Carbon/Carbon Brake Disk (탄소/탄소 브레이크 디스크의 열탄성 해석과 3차원 응력해석 및 설계)

  • 오세희;유재석;김천곤;홍창선;김광수
    • Composites Research
    • /
    • v.15 no.1
    • /
    • pp.41-52
    • /
    • 2002
  • This paper presents the thermo-elastic analysis for searching the behavior of carbon/carbon brake system during the braking period and the 3-D stress analysis to find the shape of the brake disk which is safe to the failure. The mechanical properties of the carbon/carbon brake disk were measured for both in-plane and out of plane directions. The mechanical properties were used as the input of the thermo-elastic analysis and 3-dimensional stress analysis for the brake disk. The gap between rotor clip and clip retainer is an important parameter in the loading transfer mechanism of the rotor disk. The change of gap was considered both the mechanical deformation and thermal deformation. Because the rotor clip and clip retainers were not contacted, they were excluded from the analysis model. Rotor disk was modeled by using the cyclic symmetry condition. The contact problems between rotor clip and key drum as well as between rotor disk and rotor were considered. From the results of the 3-D stress analysis, the stress concentration at the key hole of the brake disk was confirmed. The stress distributions were studied thor the variation of the rotation angle of the contact surface and the radius of curvature at the key hole part.

A Study on the Performance Analysis of Butterfly Valve in Water Fire Extinguishing System (수계소화시스템 버터플라이 밸브의 성능해석에 관한 연구)

  • Lee, Dong-Myung
    • Fire Science and Engineering
    • /
    • v.21 no.3
    • /
    • pp.91-96
    • /
    • 2007
  • Performance analysis of the butterfly valve in water fire extinguishing has been carried out. Performance analysis of the butterfly valve are investigated for torque characteristics, pressure loss and cavitations. The torque characteristics of disc are corrected for the angles of attack of valve disc by theoretical torque equation, and correction equation is added. The pressure loss coefficient on opening angle of valve has been formulated by applying the Carnot's equations. The torque characteristics, pressure loss and cavitations of the butterfly valve are analyzed for the ratio of disc thickness to the valve diameter. Cavitations are analyzed from the pressure loss coefficient of valve. The analysis of pressure loss and cavitation has been carried out change of the thickness ratio on opening angle of valve. These analysis data are utilize to necessary engineering data to develope of the butterfly valve.