• Title/Summary/Keyword: 등간격 선형 배열 안테나

Search Result 7, Processing Time 0.025 seconds

A study on the Pattern Synthesis of Random Array Antenna (임의 배열 안테나의 패턴합성에 관한 연구)

  • 고영길;신철재;박한규
    • The Journal of the Acoustical Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.59-66
    • /
    • 1983
  • 본 논문은 랜념배열 안테나에서 위치함수의 확률분포함수가 정규 Gaussian 분포가 되도록 사다 리 계층법과 등면적 분포법이란 새로운 방법을 제시하였고 이를 선형과 판형 배열 안테나로 설치하여 그의 방사특성을 컴퓨터에 의해 계산하고 합성한 것이다 측정된 결과를 Monte-Carlo 법에 의한 랜념배 열 안테나와 균일 간격으로 배열된 안테나에 의한 측정결과와 비교한 결과 부로부레벨은 등면적 분포법 에 의한 배열안테나에서 가장 낮았으며 소자수가 많을수록 낮아졌다. 또한 빔폭은 확률밀도함수와 operture 길이에 의존함을 알 수 있다.

  • PDF

Cascade AOA Estimation Using Uniform Rectangular Array Antenna (등간격 사각 배열 안테나를 적용한 캐스케이드 도래각 추정)

  • Kim, Tae-Yun;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.5
    • /
    • pp.923-930
    • /
    • 2018
  • In the wireless communication system based on an array antenna, the angle of arrival (AOA) information of signal is very important element and various AOA estimation algorithms have been studied. Although most AOA estimation algorithms employ the uniform linear array (ULA), some algorithms apply the planar array (PA) antenna. In this paper, we present an algorithm for efficiently estimating AOAs of adjacent multiple signals, based on the uniform rectangular array antenna. This approach has two steps; after approximately estimating AOA groups consisting of the closely located signal sources using CAPON, accurately estimating the individual AOA of each signal in the estimated AOA group using Beamsapce MUSIC. The estimation performance of the presented cascade AOA algorithm is illustrated through the computer simulation example.

Blind Waveform Estimation Scheme Based on ESPRIT for Nonuniform Linear Array MIMO Radars Using Distributed Multiple Electronic Sensors (분산 다중 전자전 센서를 이용한 ESPRIT 기반 비등간격 선형배열 MIMO 레이다의 암맹 직교신호 분리 기법)

  • Yeo, Kwanggoo;Chung, Wonzoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.11
    • /
    • pp.891-897
    • /
    • 2018
  • In this paper, we propose a blind estimation scheme for the antenna spacing of nonuniform linear array MIMO radar using distributed electronic sensors based on ESPRIT. We present a blind method to separate orthogonal waveforms of a MIMO radar based on the antenna spacing estimation. The estimated orthogonal waveforms of a MIMO radar can be used for disabling opponent MIMO radars.

A Study on the Optimum Synthesis of Beam Patterns and Excitation Current Weights for Monopulse Tracking Linear Array Antennas (모노펄스 추적용 선형 배열 안테나 빔 패턴 및 여기 전류 가중치들의 최적 합성에 관한 연구)

  • Park, Eui-Joon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.5
    • /
    • pp.533-540
    • /
    • 2008
  • In the sum and difference pattern synthesis problem of the equi-spaced monopulse tracking linear array antennas, an efficient numerical approach to deriving the relative excitation current weights of antenna elements is presented for the desired patterns. This method is based on the optimum perturbation of null points which are inherent to the Schelkunoffs polynomial representing the pattern array factor. Accordingly, opposite to the conventional method in which the excitation weights are directly optimized, this method is advantageous in that the patterns with the desired individual sidelobe levels(SLLs) and the corresponding excitation weights are easily synthesized by the control of null points. Furthermore, it is showed that two types of difference patterns can be synthesized as imposing the different initial values of null points in the optimization process. The proposed method is numerically validated by synthesizing the patterns with the arbitrary SLLs and substituting the extracted results into the array factor equation.

A Study on the Time Delay Compensate Algorithm in Uniform Linear Array Antenna on Radar System (레이더시스템의 등 간격 선형 배열 안테나에서 시간 지연 보상 알고리즘 연구)

  • Lee, Min-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.4
    • /
    • pp.434-439
    • /
    • 2019
  • This paper proposed a control algorithm to compensate the delay time to improve the signal to noise, and the proposed control algorithm estimate the target information to apply the continuous wave radar equation. The proposed control algorithm improves the output signal of each array element bv multiplying the weight of the receive signal to the signal to noise ratio. Radar radiate a signal in spatial and the target information is estimated by the echoed signal from the target. But the signal in the wireless communication environment occurs the delay time due to the multipath which appear human and natural structures. It is difficult to accurately estimate the desired information because of the degradation for the system performance due to the interference signal and the signal distortion. The target information can be improved by compensating the delay signal to apply the weight to the received signal by using the uniform linear array antenna. As a simulation result, we show that the performance of the proposed control algorithm and the non-compensated delay time are compared. The proposed control algorithm proved that the target distance estimation information is improved.

A Study on the Improvement of the Directivity for Rectangular Microstrip Patch Array Antennas Conformed to a Cylindrical Surface (원통면에 정합-배열된 장방형 마이크로스트립 패치 안테나의 지향성 개선을 위한 연구)

  • 고광태;구연건
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.5 no.2
    • /
    • pp.46-54
    • /
    • 1994
  • In this paper, an analysis and design method is proposed, which is to improve the directivity of microstrip array antennas conformed to a cylindrical surface. In the case of forming an arc-array in the circumferential direction on a circula-cylinder surface, the circular-cylinder can be approximated to a polygonal-pillar and on each pillar-planes the sub-arrays, Dolph-Tschebyscheff array and uniform array with a beam steered in the desired direction, would make a sharp directivity for the total cylin- drical array antenna. And the radiation pattern according to the type of its sub arrays is analyzed and compared using the cylindrical-cavity codel. A cylindrical microstrip array antenna, with 12 elements and uniform arra as a sub-array which have an equal distance$\lambda_0$/2between the elements, is manufactured and conformed to a cylinder with radius of 6 The measured data of side lobe level, HPBW and FNBW are - 13dB, $9^{\circ}$, and $15{\circ}$, ,respectively. This result shows a good improvement on the directivity comparing with a linear array.

  • PDF

AIC & MDL Algorithm Based on Beamspace, for Efficient Estimation of the Number of Signals (효율적인 신호개수 추정을 위한 빔공간 기반 AIC 및 MDL 알고리즘)

  • Park, Heui-Seon;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.617-624
    • /
    • 2021
  • The accurate estimation of the number of signals included in the received signal is required for the AOA(: Angle-of-Arrival) estimation, the interference suppression, the signal reception, etc. AIC(: Akaike Information Criterion) and MDL(: Minimum Description Length) algorithms, which are known as the typical algorithms to estimate the signal number, estimate the number of signals according to the minimum of each criterion. As the number of antenna elements increased, the estimation performance is enhanced, but the computational complexity is increased because values of criteria for entire antenna elements should be calculated for finding their minimum. In order to improve this problem, in this paper, we propose AIC and MDL algorithms based on the beamspace, which efficiently estimate the number of signals while reducing the computational complexity by reducing the dimension of an array antenna through the beamspace processing. In addition, we provide computer simulation results based on various scenarios for evaluating and analysing the estimation performance of the proposed algorithms.