• 제목/요약/키워드: 등가 정하중

검색결과 42건 처리시간 0.032초

등가정하중을 이용한 구조최적설계 방법을 이용한 비선형 거동구조물의 최적설계 (Non-linear Structural Optimization Using NROESL)

  • 박기종;박경진
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1256-1261
    • /
    • 2004
  • Nonlinear Response Optimization using Equivalent Static Loads (NROESL) method/algorithm is proposed to perform optimization of non-linear response structures. It is more expensive to carry out nonlinear response optimization than linear response optimization. The conventional method spends most of the total design time on nonlinear analysis. Thus, the NROESL algorithm makes the equivalent static load cases for each response and repeatedly performs linear response optimization and uses them as multiple loading conditions. The equivalent static loads are defined as the loads in the linear analysis, which generates the same response field as those in non-linear analysis. The algorithm is validated for the convergence and the optimality. The function satisfies the descent condition at each cycle and the NROESL algorithm converges. It is mathematically validated that the solution of the algorithm satisfies the Karush-Kuhn-Tucker necessary condition of the original nonlinear response optimization problem. The NROESL algorithm is applied to two structural problems. Conventional optimization with sensitivity analysis using the finite difference method is also applied to the same examples. The results of the optimizations are compared. The proposed method is very efficient and derives good solutions.

  • PDF

선형 등가정하중을 이용한 비선형 거동 구조물의 최적설계 (II) - 구조예제 - (Structural Optimization for Non-Linear Behavior Using Equivalent Static Loads (II) - Structural Examples -)

  • 박기종;박경진
    • 대한기계학회논문집A
    • /
    • 제29권8호
    • /
    • pp.1061-1069
    • /
    • 2005
  • In part I of this papter Nonlinear Response Optimization using Equivalent Static Loads (NROESL) method/algorithm is developed to conduct optimization for nonlinear behavior structures. The method/algorithm is also verified to show its convergency and optimality. In this present paper, the NROESL algorithm is applied to several structural problems with geometric and/or material nonlinearity. Conventional optimization with sensitivity analysis using the finite difference method is also applied to the same examples. The results of the optimizations are compared. The proposed method is very efficient and derives good solutions.

선형 등가정하중을 이용한 비선형 거동 구조물의 최적설계 (I) - 알고리듬 - (Structural Optimization for Non-Linear Behavior Using Equivalent Static Loads (I))

  • 박기종;박경진
    • 대한기계학회논문집A
    • /
    • 제29권8호
    • /
    • pp.1051-1060
    • /
    • 2005
  • Nonlinear Response Optimization using Equivalent Static Loads (NROESL) method/algorithm is proposed to perform optimization of non-linear response structures. The conventional method spends most of the total design time on nonlinear analysis. The NROESL algorithm makes the equivalent static load cases for each response and repeatedly performs linear response optimization and uses them as multiple loading conditions. The equivalent static loads are defined as the loads in the linear analysis, which generates the same response field as those in non-linear analysis. The algorithm is validated for the convergence and the optimality. The proposed algorithm is applied to a simple mathematical problem to verify the convergence and the optimality.

동하중으로부터 변환된 등가정하중을 통한 구조물의 형상최적설계 (Structural Shape Optimization under Static Loads Transformed from Dynamic Loads)

  • 박기종;이종남;박경진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1262-1269
    • /
    • 2003
  • In structural optimization, static loads are generally utilized although real external forces are dynamic. Dynamic loads have been considered in only small-scale problems. Recently, an algorithm for dynamic response optimization using transformation of dynamic loads into equivalent static loads has been proposed. The transformation is conducted to match the displacement fields from dynamic and static analyses. The algorithm can be applied to large-scale problems. However, the application has been limited to size optimization. The present study applies the algorithm to shape optimization. Because the number of degrees of freedom of finite element models is usually very large in shape optimization, it is difficult to conduct dynamic response optimization with the conventional methods that directly threat dynamic response in the time domain. The optimization process is carried out via interfacing an optimization system and an analysis system for structural dynamics. Various examples are solved to verify the algorithm. The results are compared to the results from static loads. It is found that the algorithm using static loads transformed from dynamic loads based on displacement is valid even for very large-scale problems such as shape optimization.

  • PDF

동하중으로부터 변환된 등가정하중을 통한 구조물의 형상최적설계 (Structural Shape Optimization under Static Loads Transformed from Dynamic Loads)

  • 박기종;이종남;박경진
    • 대한기계학회논문집A
    • /
    • 제27권8호
    • /
    • pp.1363-1370
    • /
    • 2003
  • In structural optimization, static loads are generally utilized although real external forces are dynamic. Dynamic loads have been considered in only small-scale problems. Recently, an algorithm for dynamic response optimization using transformation of dynamic loads into equivalent static loads has been proposed. The transformation is conducted to match the displacement fields from dynamic and static analyses. The algorithm can be applied to large-scale problems. However, the application has been limited to size optimization. The present study applies the algorithm to shape optimization. Because the number of degrees of freedom of finite element models is usually very large in shape optimization, it is difficult to conduct dynamic response optimization with the conventional methods that directly threat dynamic response in the time domain. The optimization process is carried out via interfacing an optimization system and an analysis system for structural dynamics. Various examples are solved to verify the algorithm. The results are compared to the results from static loads. It is found that the algorithm using static loads transformed from dynamic loads based on displacement is valid even for very large-scale problems such as shape optimization.

비례하중변환법의 등가정하중을 이용한 비선형 거동을 하는 구조물의 최적설계 (Structural Optimization for Non-Linear Behavior Using Equivalent Static Loads by Proportional Transformation of Loads)

  • 박기종;권용덕;송기남;박경진
    • 대한기계학회논문집A
    • /
    • 제30권1호
    • /
    • pp.66-75
    • /
    • 2006
  • Nonlinear response structural optimization using equivalent static loads (NROESL) has been proposed. Nonlinear response optimization is solved by sequential linear response optimization with equivalent static loads which are generated from the nonlinear responses and linear stiffness matrix. The linear stiffness matrix should be obtained in NROESL, and this process can be fairly difficult for some applications. Proportional transformation of loads (PTL) is proposed to overcome the difficulties. Equivalent static loads are obtained by PTL. It is the same as NROESL except for the process of calculating equivalent static loads. PTL is developed for large-scale probems. First, linear and nonlinear responses are evaluated from linear and nonlinear analyses, respectively. At a DOF of the finite element method, the ratio of the two responses is calculated and an equivalent static load is made by multiplying the ratio and the loads for linear analysis. Therefore, the mumber of the equivalent static loads is as many as that of DOF's and an equivalent static load is used with the reponse for the corresponding DOF in the optimization process. All the equivalent static loads are used as multiple loading conditions during linear response optimization. The process iterates until it converges. Examples are solved by using the proposed method and the results are compared with conventional methods.

평판형 주름판넬에 대한 등가 연속체 모델링기법 (Equivalent Continuum Modeling Methods for Flat Corrugated Panels)

  • 이상윤;이우식
    • 한국철도학회논문집
    • /
    • 제3권2호
    • /
    • pp.43-50
    • /
    • 2000
  • The corrugated panels are the prime candidate structure for the floor, roof and wall of Korean high speed train. The equivalent continuum modeling approach panels can be used for the efficient design and evaluation of their structural characteristics. The equivalent continuum models, derived from the true complex corrugated panels, should have the same structural behavior as the original structures have. This paper briefly reviews three representative continuum modeling methods: the static analysis method and two plate-models based on modal analysis methods (MAM). These methods are evaluated through some numerical examples by comparing the natural frequencies and static deflections. It is observed that the plate-model based on Rayleigh-Ritz method seems to provide the best results when used in conjunction with the cantilever-type boundary conditions. The equivalent elastic constants of various corrugated panels, depending on the changes in their configurations, are tabulated for efficient use in structural design.

  • PDF

지지부가 움직이는 모바일하버용 크레인의 동적 응답 최적설계 (Dynamic Response Optimization of a Mobile Harbor Crane with a Moving Support)

  • 김현범;이재준;장환학;박경진
    • 대한기계학회논문집A
    • /
    • 제36권5호
    • /
    • pp.497-504
    • /
    • 2012
  • 모바일하버는 해상에서 컨테이너 상하역 작업을 하는 새로운 해상물류 시스템이다. 모바일하버용크레인과 같이 해상에서 작업하는 대형 구조물은 파도에 의해 발생하는 지지부의 운동으로 관성력의 영향을 크게 받는다. 따라서 구조물의 안전성에 대한 정확한 검증이 요구되며, 생산 비용을 줄이기 위해 경량화가 매우 중요하다. 이런 요구조건을 위해 동적 응답 최적설계를 수행한다. 등가정하중법은 동하중을 등가정하중으로 변환한 후, 정적 응답 최적화기법을 사용하여 문제를 해결하는 동적 응답 최적설계 방법이다. 지지부의 움직임을 고려한 등가정하중법을 제안하고, 제안한 방법으로 모바일하버용 크레인을 최적화한다.

우주발사체용 복합재 산화제탱크 구조 강건성 검증을 위한 정하중 시험 (Static Load Test for Verification of Structural Robustness of Composite Oxidant Tank for Space Launch Vehicle)

  • 김현기;김성찬
    • 항공우주시스템공학회지
    • /
    • 제15권5호
    • /
    • pp.98-105
    • /
    • 2021
  • 본 연구에서는 우주발사체용 복합재 산화제탱크의 구조 강건성을 검증하기 위해 수행된 정하중시험 결과를 제시하였다. 먼저, 복합재 산화제탱크 정하중시험에 사용된 시험장비를 소개하고, 복합재 산화제탱크가 만족해야 하는 시험 요구도를 설명하였다. 그리고, 정하중 시험치구, 유압, 제어장비, 데이터획득장비로 구성되는 시험셋업 구성도를 제시하였고, 전단, 등가압축, 굽힘, 조합시험으로 구성된 복합재 산화제탱크 정하중 시험의 하중 프로파일을 제시하였다. 하중 제어의 결과로 시험하중 증가에 따른 각 하중부과기에서 입력하중과 출력하중 사이의 오차와 각 로드셀 A와 b 채널사이의 오차를 제시하여 본 시험의 신뢰성을 확인하였다. 정하중 시험 결과로, 각 시험에서 하중부과기의 하중은 허용 오차 범위 내에서 적절히 잘 제어되었으며, 시험시편도 요구 하중 내에서 파손이나 심각한 구조적 결함을 유발하는 좌굴은 발생하지 않는 것으로 확인되었다.