• Title/Summary/Keyword: 등가강성계수

Search Result 57, Processing Time 0.019 seconds

Numerical Model to Evaluate Resistance against Direct Shear Failure and Bending Failure of Reinforced Concrete Members Subjected to Blast Loading (폭발하중을 받는 철근콘크리트 부재의 직접전단 파괴 및 휨 파괴 저항성능 평가를 위한 수치해석 모델 개발)

  • Ju, Seok Jun;Kwak, Hyo-Gyoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.6
    • /
    • pp.393-401
    • /
    • 2021
  • In this paper, we proposed a numerical model based on moment-curvature, to evaluate the resistance of reinforced concrete (RC) members subjected to blast loading. To consider the direct shear failure mode, we introduced a dimensionless spring element based on the empirical direct shear stress-slip relation. Based on the dynamic increase factor equations for materials, new dynamic increase factor equations were constructed in terms of the curvature rate for the section which could be directly applied to the moment-curvature relation. Additionally, equivalent bending stiffness was introduced in the plastic hinge region to consider the effect of bond-slip. To verify the validity of the proposed model, a comparative study was conducted against the experimental results, and the superiority of this numerical model was confirmed through comparison with the analytical results of the single-degree of freedom model. Pressure-impulse (P-I) diagrams were produced to evaluate the resistance of members against bending failure and direct shear failure, and additional parametric studies were conducted.

Parameter Identification and Nonlinear Seismic Analysis of Soil-Structure Interaction System (지반-구조물 상호작용계의 강성계수추정 및 비선형지진해석)

  • 윤정방;최준성;김재민;김문수
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.41-49
    • /
    • 1997
  • This paper presents the result of an international cooperative research on the post-correlation analysis of forced vibration tests and the prediction of earthquake responses of a large-scale seismic test structure. The dynamic analysis is carried out using the axisymmetric finite element method incorporating in finite elements for the for field soil region. Through the post-correlation analysis, the properties of the soil layers are revised so that the best correlation in the responses may be obtained compared with the measured force vibration test data. Utilizing the revised soil properties as the initial linear values, the seismic responses are predicted for an earthquake using the equivalent linearlization technique. It has been found that the predicted responses by the equivalent nonlinear procedure are in excellent agreement with the observed responses, while those using the linear properties are fairly off from the measured results.

  • PDF

Equivalent Linear Stiffness Matrix of Pile Foundation for the Seismic Response Analysis of Bridges (교량의 지진응답해석을 위한 말뚝기초의 등가 선형 강도행렬)

  • 박형기;조양희
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.3
    • /
    • pp.1-8
    • /
    • 2001
  • Seismic design forces for bridge components may be determined by modifying elastic member forces of design earthquakes using appropriate response modification factors according to the national design code of bridges Modeling technique of pile foundation system is one of the important parameters which greatly affects the results in the process of the elastic seismic analysis of a bridge system with pile foundation. In this paper, a approximate and simplified modeling technique of a pile foundation system for the practical purposes is presented. The modeling technique is based on the stiffnesses of pile foundation during earthquake. The horizontal stiffnesses are determined from the resistance-deflection curves derived from the results of dynamic field tests using cyclic loads and the vertical stiffness includes the effects of the end bearing capacities and side friction of piles as well as the pile compliances under the expected vertical load level. The applicability of the proposed technique has been validated through the some example bridge analyses.

  • PDF

Effect of Geometric Shapes on Stability of Steel Cable-stayed Bridges (기하형상에 따른 강사장교의 안정성에 관한 연구)

  • Kim, Seung-Jun;Han, Seung-Ryong;Kim, Jong-Min;Cho, Sun-Kyu;Kang, Young-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.1
    • /
    • pp.13-27
    • /
    • 2011
  • This paper presents an investigation of the structural stability of cable-stayed bridges, using geometric nonlinear finite-element analysis and considering various geometric nonlinearities, such as the sag effect of the cables, the beam-column effect of the girder and mast, and the large displacement effect. In this analytic research, a nonlinear frame element and a nonlinear equivalent truss element were used to model the girder, mast, and cable member. The live-load cases that were considered in this research were assumed based on the traffic loads. To perform reasonable analytic research, initial shape analyses in the dead-load case were performed before live-load analysis. In this study, the geometric nonlinear responses of the cable-stayed bridges with different cable arrangement types were compared. After that, parametric studies on the characteristics of the structural stability in critical live-load cases were performed considering various geometric parameters, such as the cable arrangement type, the stiffness ratios of the girder and mast, the area of the cables, and the number of cables. Through this parametric study, the effect of geometric shapes on the structural stability of cable-stayed bridges was investigated.

Finite Element Analysis of Planar Effect on the Concrete Pavements (유한 요소법에 의한 콘크리트 포장 구조의 평면 거동연구)

  • Jo, Byung Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1091-1096
    • /
    • 1994
  • Since horizontal movements due to shrinkage and thermal gradients in concrete pavements involve no actual load, the stresses induced will be those due to closing of the pavement joints and subbase friction. Consequently, complete derivations of stiffness matrix and equivalent nodal loads due to planar effects on the concrete pavements was throughly undertaken using the finite rectangular elements with two degrees of freedom at each node. The numerical example shows that the tensile stress induced in a pavement due to concrete shrinkage might be negligible except at very long slab and very high coefficient of frictions. However the stresses in conjunction with principal traffic loads might cause cracking problems.

  • PDF

Prediction of the Damage in the Structure with Damping Using the Modified Dynamic Characteristics (동특성 변화를 이용한 감쇠 구조물의 손상예측)

  • Lee, Jung Youn
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.11
    • /
    • pp.1144-1151
    • /
    • 2012
  • A damage in structure alters its dynamic characteristics. The change is characterized by changes in the modal parameter, i.e., modal frequencies, modal damping value and mode shape associated with each modal frequency. Changes also occur in some of the structural parameters; namely, the mass, damping, stiffness matrices of the structure. In this paper, evaluation of changes in stiffness matrix of a structure is presented as a method not only for identifying the presence of the damage but also locating the damage. It is shown that changed stiffness matrix can be accurately estimated a sensitivity coefficient matrix derived from modifying mode shapes, First, with 4 story shear structure models, the effect of presence of damage in a structure on its stiffness matrix is studied. By using these analytical model, the effectiveness of using change of stiffness matrix in detecting and locating damages is demonstrated. To validate the predicted changing stiffness and its location, the obtained results are compared to the reanalysis result which shows good agreement.

Effects of Accelerated Thermal Aging on Dynamic Properties of Laminated Rubber Bearings (적층고무받침의 가속 열 노화 동적특성 영향)

  • Oh, Ju;Jung, Hie-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5A
    • /
    • pp.417-424
    • /
    • 2010
  • The dynamic properties of laminated rubber bearings used as isolators in structures could be significantly deteriorated because of the change of microstructure in rubber caused by thermal aging. As a result, a catastrophic failure of bridges and buildings unexpectedly occurs when they are subjected to earthquake attack. Here, the dynamic properties of laminated rubber bearings before and after different of compression-shear loading and repeated cycles loadings, ultimated failure test with thermal aging were first measured and compared to each other. The experimental results, the effects of thermal aging on the shear stiffness, energy absorption, and equivalent damping coefficient of laminated rubber bearings are investigated. It is found that the deterioration of dynamic properties of laminated rubber bearings caused by thermal aging is significant and should be taken into account in designing rubber bearings.

Pushover Analysis of an Unbraced 5-Story Steel Framed Structure for Arrangement of Semi-Rigid Connection (반강접 접합부 배치에 따른 비가새 5층 철골골조구조물의 비탄성 정적해석)

  • Kang, Suk-Bong;Kim, Sin-Ae
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.325-334
    • /
    • 2010
  • In this study, an unbraced five-story steel-framed structure was designed in accordance with KBC2005 to understand the features of structural behavior for the arrangement of semi-rigid connections. A pushover analysis of the structural models was performed, wherein all the connections were idealized as fully rigid and semi-rigid. Additionally, horizontal and vertical arrangements of the semi-rigid connection were adopted for the models. A fiber model was utilized for the moment-curvature relationship of the steel beam and the column, and a three-parameter power model was adopted for the moment-rotation angle of the semi-rigid connection. The top displacement, base-shear force, required ductility for the connection, sequence of the plastic hinge, and design factors such as the overstrength factor, ductility factor, and response modification coefficient were investigated using the pushover analysis of a 2D structure subjected to the equivalent static lateral force of KBC2005. The partial arrangement of the semi-rigid connection was found to have secured higher strength and lateral stiffness than that of the A-Semi frame, and greater ductility than the A-Rigid frame. The TSD connection was found suitable for use for economy and safety in the sample structure.

Dynamic Modeling and Simulation of a Towing Rope using Multiple Finite Element Method (다물체 요소이론을 이용한 예인줄 동역학의 모델링 및 시뮬레이션)

  • Yoon, Hyeon-Kyu;Lee, Hong-Seok;Park, Jong-Kyu;Kim, Yeon-Gyu
    • Journal of Navigation and Port Research
    • /
    • v.36 no.5
    • /
    • pp.339-347
    • /
    • 2012
  • After towing rope connecting a barge to a tug was subdivided into multiple finite elements, then those dynamic models was established using Newton's second law and considering the external force and moment such as tension, drag, Coriolis force, gravity, buoyancy, and impact due to free surface acting on each element. While the previous research on the model of towing rope considered only translation, five-degree-of-freedom equations of motion except roll based on the body-fixed frame were established in this paper. All elements are connected by a spring and a damper, and the stiffness of the spring was set as the equivalent value of the real rope. In order to confirm the established multiple finite element model, various scenarios such as freely falling of towing rope in the air and above the free surface, accelerating of a tug which tows a barge connected by towing rope, and sinusoidal moving of a tug were set up and simulated. As the results, the trajectories of the tug, the barge, and the towing rope showed good tendencies to the ones of real expected situations.

Compressive Stress Distribution of High Tension Bolted Joints (고장력 볼트 이음부의 내부 압축응력 분포)

  • Kim, Sung Hoon;Lee, Seung Yong;Choi, Jun Hyeok;Chang, Dong Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.2 s.31
    • /
    • pp.171-179
    • /
    • 1997
  • The high-tension bolted joints are clamped by the axial force which approaches the yielding strength. The introduced axial force is transmitted to the connection members pass through washer. The transferred load in connections is balanced to the compressive stress of plates, axial force in bolts and the external loads. In this mechanism, the compressive stress and slip load we dominated by the effective stiffness of bolted joints and plates. In general the effective stiffness is specified to product to the effective area and elasticity modulus in connections. In this reason, the conic projection formular which is assumed that the axial force in bolts is distributed to the cone shape and that region is related to the elastic deformation mechanism in connections, was proposed. But it conclude what kind of formula is justified. Therefore in this paper, the fatigue tests are performed to the high tension bolted joints and inspected to the phase on the friction face. And using the FEM and numerical method, it is analyzed and approximated to the compressive stress distribution and its region. Moreover, it is estimated to the effective area and to the relation the friction area to the effective compressive distribution region.

  • PDF