• Title/Summary/Keyword: 등가감쇠

Search Result 155, Processing Time 0.028 seconds

Application of Equivalent Walking Loads for Vibration Analysis of Building Floor Subjected to Footstep Loadings (보행하중을 받는 건축물 바닥판의 진동해석을 위한 등가 보행하중의 적용)

  • 김기철;이동근
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.5
    • /
    • pp.35-45
    • /
    • 2001
  • Recently, the floor systems those require large open space may have low inherent damping due to the decline of the use of curtain walls. Furthermore, the use of the high strength materials has resulted in more flexible and longer spanning in floor systems. The long span structures such as shopping malls, offices and large assembly rooms may lead to significant dynamic response due to human activities. Excessive vibrations make the occupants uncomfortable and deteriorate the serviceability of buildings. It is now proved that footfall loading is the major source of floor vibrations. The common method of application of walking loads for the vibration analysis of structures subjected to walking loads is to inflict measured walking loads and periodic function at a node. But this method could not account for the moving effect of walking. In this study, natural frequency and damping ratio of example structure are evaluated by heel drop tests. And the application of equivalent walking loads is used for on efficient vibration analysis of the plate structures subjected to walking loads.

  • PDF

A Study on Phugoid Mode in Longitudinal Axis of T-50 (T-50 세로축 장주기 모드 운동 특성에 관한 연구)

  • Kim, Jong-Seop;Hwang, Byeong-Mun;Kim, Seong-Jun;Heo, Gi-Bong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.25-32
    • /
    • 2006
  • An advanced method of Relaxed Static Stability (RSS) is utilized for improving the aerodynamic performance of modern version supersonic jet fighter aircraft. The flight control system utilize RSS criteria in both longitudinal and lateral-directional axes to achieve performance enhancements and improve stability. The T-50 advanced trainer employs the RSS concept in order to improve the aerodynamic performance and the flight control law in order to guarantee aircraft stability. The longitudinal two modes are the short period with high frequency and the phugoid mode with low frequency. The design goals of longitudinal control laws is concerned with the short period damping and frequency optimization using lower order equivalent system and utilizing the requirement of MIL-F-8785C. Analysis of short period mode has been and continues to be performed This paper addresses the analysis of aircraft phugoid node characteristics such as damping, natural frequency, and analysis of aircraft pitch motion that impacted by angle of attack limiter and auto pitch attitude control law.

Experimental Study on Characteristics of Low Hardness Rubber Bearing (저경도 고무받침의 특성에 관한 실험적 연구)

  • 정길영;하동호;박건록;권형오
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.39-49
    • /
    • 2002
  • In this paper, the characteristics of RB(rubber bearing) were studied by various prototype tests on RB with low hardness rubber. The characteristics of RB were tested on displacements, repeated cycles, frequencies, vertical pressures, temperature, vertical stiffness and the capability of shear deformation. The prototype test showed that the displacement and vertical pressures were the most governing factors influencing on characteristics of RB. The effective stiffness and equivalent damping of RB showed small increment in high frequency range. After the repeated cyclic test with 50's cycles, the effective stiffness and equivalent damping of RB were almost constant compared with those of the 1st cycles due to low hysteretic damping. The shear modulus of RB was reduced after large deformation, and this value of RB was partly recovered after 40 days. Finally, the shear failure test of RB was conducted, the prototype was failed over 490% of shear strain, and real size RB was failed over 430% of shear strain.

Effect of Loading Frequency Dependent Soil Behavior on Seismic Site Effect (하중의 주파수에 의하여 지배받은 흙의 동적 거동이 부지증폭현상에 미치는 영향)

  • Park Du-Hee;Hashash Y.M.A;Lee Hyun-Woo;Kim Jae-Yoen
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.3
    • /
    • pp.23-35
    • /
    • 2006
  • Equivalent linear analysis is widely used in estimating local seismic site effects. The soil behavior in the analysis is often assumed to be rate-independent and is not influenced by the seismic loading frequency. Laboratory results, however, indicate that cohesive soil behavior is greatly influenced by the loading frequency. A new equivalent linear analysis method that accounts for the loading frequency dependent soil behavior is developed and used to perform a series of one dimensional site response analyses. Results indicate that while frequency dependent shear modulus has limited influence on computed site response, frequency dependent soil damping greatly filters out high frequency components of the ground motion and thus results in lower response.

A General Formula for Calculating the Value of Transverse Moment of Inertia by Observing the Roll Motion of Ships (횡요상태 관측에 의한 선체 횡관성모멘트 값의 도출을 위한 일반식)

  • Choi, Soon-Man
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.5
    • /
    • pp.538-542
    • /
    • 2015
  • The transverse moment of inertia is an indispensable factor in analyzing the roll motion characteristics of ships and the calculating method needs to be based on the more reasonable theories when deciding the value as the results and reliability of analysis could be much affected by the correctness. However, the mass distribution and shape of hulls are quite complicated and give much difficulties in case of calculating the value directly from the ship design data, furthermore even acquiring the detailed design data for calculation is almost impossible. Therefore some simpler ways are practically adopted in the assumption that the gyradius of roll moment can be decided by a given ratio and hull width. It is well known that the responses of the free roll decay are varied according to the value of roll moment in view of roll period and amplitude decay ratio, so that the general formula to get the moment value can be derived also from the observation of roll decay responses. This study presents how the roll period and decay ratio are interrelated each other from the roll motion characteristics with suggesting a general formula to be able to calculate roll moment from it. Finally, the obtained general formula has been applied to a ship data to check the resultant characteristics through analyzing graphs and showed that the roll moment becomes more accurate when rolling period and decay ratio are considered together in calculation.

Seismic Response of Structures with Buckling-Restrained Braces (좌굴방지 가새가 설치된 건물의 지진응답)

  • 김진구;최현훈
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.2
    • /
    • pp.197-207
    • /
    • 2002
  • Energy dissipation capacity and earthquake responses of steel structures installed with unbonded braces(UB) were investigated. Parametric studies were performed for a single-degree-of-freedom structure under harmonic loads, and optimum yield strength of unbonded braces were derived. Nonlinear dynamic time history analyses were carried out to investigate the seismic response of multi-story model structures with UB having various size and strength. Various techniques were applied to determine proper story-wise distribution of UB in multi-story structures. The analysis results show that the maximum displacements of structures generally decrease as the stiffness of UB increases. However for some natural frequencies and seismic loads the maximum displacement and accumulated damage increases as the stiffness of UB increases.

Determination of Structural Performance Point Utilizing The Seismic Isolation Rubber Bearing Design Method (면진격리 고무베어링 설계법을 이용한 구조물의 성능점 예측)

  • 김창훈;좌동훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.23-30
    • /
    • 2003
  • The seismic base isolation design approach has been reviewed and modified to fit the nonlinear static analysis procedure for determination of the performance point of structures in a simpler way, such an adaptation may be possible for the fact that a structural system under development of damage due to earthquake loading keeps softening to result in period shifting toward longer side. The superiority of the proposed method to the state-of-the-practice approach is that the reasonably accurate performance point can be obtained without constructing the so-called acceleration displacement response spectrum required in application of capacity spectrum method. The validity of the proposed approach was verified by comparing the predicted values to the exact ones presented in the literature.

General Method of Equivalent Damping Ratio Evaluation of a Structure equipped with Response Dampers (응답감쇠장치가 설치된 구조물의 등가감쇠비산정에 관한 일반적인 방법)

  • 민경원;이영철;이상현
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.109-114
    • /
    • 2002
  • The purpose of this study is to propose the general method for evaluating the equivalent damping ratios of a structure with supplemental response control dampers. We define Lyapunov function of which derivative can be expressed in autoregressive form and evaluate the equivalent damping ratios by using Lyapunov function and its derivative. This Lyapunov function may be called as generalized structural energy. In this study, it is assumed that the response of a structure is stationary random process and control dampers do not affect the modal shapes of a structure, and the structure has proportional damping. Proposed method can be used to get the equivalent damping ratios of a structure with non-linear control dampers such as friction dampers as well as linear control dampers. To show the effectiveness of the proposed method. we evaluate the equivalent damping ratios of a structure with viscous dampers. AMDs. and friction dampers. The equivalent damping ratios from proposed method are compared to those from eigenvalue analysis for linear control dampers. and those from time history analysis for non-linear control dampers. respectively.

  • PDF

Three Axis Disk Spring Damper Containing Wedge System (웻지를 이용한 3축 방향 디스크 스프링 댐퍼에 관한 연구)

  • Choi, Myung-Jin;Jeong, Ji-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.6
    • /
    • pp.1-8
    • /
    • 2009
  • This study pertains to damping device to reduce vibrational responses and shocks in multi-directions. To enhance the capability of disk spring damper which works for vertical vibration and shock, a multi-directional damper is proposed, which contains wedge system as well as disk spring stack. Wedge system converts horizontal load into vertical load. A mathematical model is proposed and investigated for the nonlinear behaviors of the disc spring damper containing wedge system. The results accord with the experimental results. Equivalent viscous damping in vertical and horizontal directions are found based upon energy dissipated.

  • PDF

An Optimal Placement of passive Constrained Layer Damping Treatment for Vibration Suppression of Automotive Roof (차량루프의 진동저감을 위한 수동구속감쇠처리의 위치 최적화)

  • Lee, Ki-Hwa;Kim, Chan-Mook;Kang, Young-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.349-353
    • /
    • 2004
  • A study on optimal placement of constrained layer damping treatment for vibration control of automotive panels is presented. The effectiveness of damping treatment depends upon design parameters such as choice of damping materials, locations and size of the treatment. This paper proposes a CAE (Computer Aided Engineering) methodology based on finite element analysis to optimize damping treatment. From the equivalent modeling technique, it is found that the best damping performance occurs as the viscoelstic patch is placed by means of the modal strain energy method of bare structural panels to identify flexible regions, which in turn facilitates optimizations of damping treatment with respect to location and size. Different configurations of partially applied damping layer treatment have been analyzed for their effectiveness in realizing maximum system damping with minimum mass of the applied damping material. Moreover, simulated frequency response function of the automotive roof with and without damping treatments are compared, which show the benefits of applying damping treatment. Finally, the optimized damping treatment configuration is validated by comparing the locations and the size of the treatment with that of an experimental modal test conducted on roof compartment.

  • PDF