예측하기 어려운 복잡한 기후 변화로 인해 수자원 관리측면에서 다양한 방법을 도입하여 해결할 수 있는 방안이 국가적 주요 관심사로 다루어지고 있다. 따라서 투입인력과 소요시간 절감, 장비와 인력진입 불가지역에 대한 정보획득, 높은 공간해상도, 항공측량 대비 높은 경제성 등 다양한 장점의 드론을 이용한 하천지형 특성별 수리특성 분석방안이 필요하다. 본 연구에서는 성연천 하류부지역을 대상으로 위성항법시스템(Global Navigation Satellite System, GNSS) 측량 지형성과와 드론측량(Drone) 지형성과를 지상에 설치된 CHP(Check Point) 좌표 값을 확인하여 두 지형의 정확도를 비교하였으며 HEC-RAS 모형을 이용하여 빈도별 수리특성을 비교 산정하였다. 본 연구는 성연천 하류 480m구간을 선정하고 GNSS를 이용한 실측지형자료와 GCP(Ground Control Point)를 얻기 위해 정확도 검증을 실시하였으며 위성항법시스템(GNSS) 측량과 DRONE RGB측량의 CHP(Check Point) 오차를 비교하여 정확도를 검증하였다. 오차 값이 확인된 위성항법시스템(GNSS)을 이용하여 가상기준점을 선정하고 RTK 모바일스테이션을 설치하여 DRONE LIDAR측량을 통해 지형자료를 취득하였으며 얻어진 지형자료를 HEC-RAS를 통해 입력 후 성연천 하천기본계획에 제시되어진 조도계수와 빈도별 홍수위를 적용하여 연구구간 480m에 대해 100년 빈도의 결과 값을 비교 검토하였다. 100년 빈도 계획 홍수량 조건의 하상과 한계수위의 차에서 위성항법시스템(GNSS) 측량 지형자료를 기준으로 평균수위 측정오차는 드론 RGB 측량 지형자료 0.460m, 드론 LIDAR 측량 지형자료 0.260m의 결과를 얻었으며 동일 조건 흐름하의 평균유속에서 위성항법시스템(GNSS) 측량 지형자료를 기준으로 평균유속 측정오차는 드론 RGB 측량 지형자료 0.40m/s, 드론 LIDAR 측량 지형자료 0.36m/s의 결과를 얻었다. 통수 단면적의 비교 결과는 위성항법시스템(GNSS) 측량 지형자료를 기준으로 드론 RGB 측량 지형자료 전체 단면의 평균오차는 20.20m2, 드론 LIDAR 측량 지형자료 전체 단면의 평균오차는 21.682의 결과를 얻었으며 이상에서와 같이 홍수위와 평균유속, 통수 단면적의 측정오차 비교 결과를 종합할 때 통수 단면적 측정결과는 위성항법시스템(GNSS) 측량과 드론 RGB 측량의 차이가 적었으나 계획 홍수량 조건의 하상과 한계수위 차이와 동일조건 흐름하의 평균유속에서 위성항법시스템(GNSS) 측량과 드론 LIDAR 측량의 차이가 적은 것으로 나타났다. 그리고 통수용량(capacity)(m3) 비교에서는 위성항법시스템(GNSS) 측량을 기준으로 드론 RGB 측량은 약 7644m3, 드론 LIDAR 측량은 약 7547m3의 차이를 보여 드론 LIDAR를 이용한 결과가 가장 정확한 측정방법으로 추천할 수 있음을 확인하였다.
본 논문에서는 RGB-IR 이미징 센서가 탑재된 드론을 사용하여 태양광 발전소의 태양광(PV) 패널을 탐지하는 방법을 제안한다. 태양광 발전소에서 드론에 설치된 IR 영상의 활용은 PV 패널의 결함 여부를 판단하는데 큰 도움이 된다. 그러나 IR 영상만을 사용해서 태양광 패널을 탐지하고 결함 여부를 판단하는 것은 태양광에 의해 생긴 정반사로 인해 정확도가 떨어진다. 본 논문에서 제안하는 시스템은 드론을 이용해서 IR 영상과 RGB 영상을 동시에 획득하고 활용하는 시스템을 제안한다. 제안된 시스템으로부터 IR 영상과 RGB 영상으로 패널 탐지의 정확도를 향상시키고, 태양광에 의한 정반사와 같이 오검출 될 수 있는 문제를 극복할 수 있다.
본 연구는 지방하천의 하류구간을 대상으로 위성항법시스템(GNSS)과 드론 RGB (D-RGB), 드론 LiDAR (D-LiDAR) 측량성과 비교를 통해 측량방법의 정확도와 수공 실무의 드론 실용화를 검증하고자 한다. 이를 위해 지상기준점(GCP)과 검사점(CP) 좌표 값 측량결과의 우수성을 확인하고 그 결과를 HEC-RAS 모형에 적용하여 수리특성을 분석하고자 한다. 본 연구는 소유역인 연구대상지역을 세 방법의 정확도 비교를 위해 6개 GCP와 3개 CP를 설치하고 측량오차의 정확도 평가를 수행함으로써 D-LiDAR 측량성과가 우수한 것을 확인하였다. 이들 방법에 의한 소하천 수로구간의 100년 빈도 계획 홍수량에서 평균 하상고의 D-RGB와 D-LiDAR 성과는 2.30 m, 1.80 m, 평균 홍수위 성과는 4.73 m, 4.25 m로 D-LiDAR 성과가 우수하였다. 따라서 소하천 수로구간의 지형공간정보 획득에 드론 장비를 이용한 측량기법으로 D-LiDAR 측량이 유용한 방법이며 효율적인 방안으로 추천한다.
본 연구는 하천 관리 및 홍수위 분석에 있어 필수적인 자료 중 하나인 하천 지형정보를 얻기 위해 RGB 영상을 활용하는 방법에 대한 비교 검토가 이루어졌다. 하천 구역의 지형정보를 얻는 데 있어 흐름 구간 즉 하도 지형정보를 얻는 것이 가장 어려운 분야 중 하나이기에 본 연구에서는 RGB 영상 기반으로 하도 지형정보를 추정하는 것에 집중하였다. 이를 위해 Acoustic Doppler Current Profiler(ADCP)와 RTK-GPS(Real Time Kinematic-GPS)를 이용하여 하도 지형을 직접 계측하였으며, 동시에 드론 촬영을 통해 획득한 고해상도 이미지를 이용하여 정사 영상을 생성하였다. 이후 수심 계측 결과와 RGB 정사 영상의 밴드 값들을 이용하여 수심 예측을 위한 기존에 개발된 회귀식들을 적용하였으며, 가장 뛰어난 예측력을 보여준 회귀식을 이용하여 연구 대상 지역의 하도 지형을 추정하였다. 흐름 구간 이외 지역의 경우 항공 라이다로부터 생성된 DEM을 이용하여 하천 구간 전체에 대한 지형정보를 구축하였다. 추가로 드론 촬영이 이루어진 동일한 시간 동안 직접 계측한 자료를 이용하여 생성된 지형정보와 드론 정사 영상 기반으로 생성된 하도 지형정보의 비교 검증을 수행하기 위해 CCHE2D 모형을 활용하여 흐름 모델링을 모의하였으며, 일부 구간에 대한 계측이 이루어지지 못한 직접 계측한 지형정보와 비교하여 영상 기반의 지형정보는 보다 나은 수심, 유속 모의 결과를 보여주었다. 본 연구 결과를 통해 RGB 영상으로부터 하도 지형정보를 획득할 수 있는 것을 확인하였으며, 추가적인 연구가 수행된다면 하천 관리를 위한 효율적인 하천 지형정보를 얻는 방법으로 활용할 가능성을 확인하였다.
홍수기 효과적인 하천관리를 위해서는 광역 모니터링을 위한 기술 확보가 매우 중요하며, 최근 드론을 활용한 하천 모니터링에 관한 관심이 점차 증가되고 있다. 하천관리에 필요한 드론 탑재용 센서는 기본적으로 RGB 광학센서를 비롯하여 근적외선(Nir) 및 열적외선 센서가 함께 운용되는 것이 효과적이다. 그러나 현재 판매되는 드론 카메라를 살펴보면 근적외선과 열적외선 센서가 별도로 분리되어 있고 광학센서에 비해 상대적으로 매우 고가로 판매되고 있는 실정이다. 따라서 하천 모니터링을 위해서는 광학(RGB), 근적외선 그리고 열적외선 센서가 통합된 저가의 탑재체 개발이 시급하고 이를 활용한 하천 모니터링 프로세스를 정립할 필요가 있다. 본 연구에서는 일반 드론에 쉽게 탑재 가능한 하천 모니터링용 탑재체를 개발하였으며, 이를 기반으로 하천 홍수 및 부유사 모니터링에 활용하였다. 광학센서는 하천의 주요 형상을 확인하는데 이용하였으며, 근적외선 센서는 홍수 및 부유사 탐지에 활용하였다. 특히 본 연구에서는 비교적 넓은 하천 구역에 대한 공간정보를 구축하기 위해 75% 이상의 중복도를 가지고 촬영하도록 세팅하였으며 영상접합 SW를 활용하여 정사영상을 생성하였다. 구축한 근적외선 정사영상으로부터 영상분석 프로그램을 활용하여 홍수 및 부유사 영역을 추출하였으며 이를 통해 홍수기 하천 모니터링 및 치수 업무 의사결정을 위한 정보를 제공할 수 있었다. 저가용 드론 센서는 상용 SW와의 연계가 어렵기 때문에 자동비행 프로그램처럼 해당 위치별 영상 촬영이 어려운 한계가 있었으며, 본 연구에서는 센서의 제원특성을 활용하여 자동비행 SW에서도 일정 이상의 중복도를 확보할 수 있는 비행고도별 촬영시간 등을 종합적으로 설계하였다. 이를 통해 해당 지역에 대한 하천 모니터링용 정사영상을 구축할 수 있었으며 기존의 고가용 드론 센서와 유사한 효과를 가져올 수 있었다.
최근 농업, 산림관리, 해안환경 모니터링 등 다양한 분야에서 다분광 카메라의 활용, 특히 드론에 탑재되어 활용되는 사례가 증대되고 있다. 산출되는 다분광 영상은 위치정보를 위해 주로 드론에 탑재된 GPS (Global Positioning System)나 IMU (Inertial Measurement Unit) 센서를 이용해 지리참조(georeferencing)되는데, 보다 높은 정확도를 위해서는 직접 측량한 지상 기준점을 이용하기도 한다. 하지만, 직접 측량에 드는 비용 및 시간으로 인해 또는 직접 접근이 어려운 지역에 대해서는 지상 참조값을 활용하지 않고 지리참조를 수행해야하는 경우가 자주 발생하게 된다. 본 연구는 지상기준점이 가용하지 않은 경우에 다분광카메라로부터의 영상의 지리참조 정밀도를 향상시키기 위해 같이 탑재된 고해상도 RGB카메라의 영상을 활용하는 방안에 대하여 연구한다. 드론 영상은 우선 번들조정을 통해 카메라의 외부표정 요소를 추정하였고, 이를 지상 기준점을 이용한 경우의 외부표정 및 위치결과와 비교하였다. 실험결과, 고해상도 영상을 포함하여 번들조정을 하게 될 경우, 다분광 카메라 영상을 단독으로 활용할 때보다, 다분광 카메라 영상의 지리참조 오차가 비약적으로 감소하였음을 확인하였다. 추가로 한 지상 지점에서 드론으로의 방향각을 추정할 때의 오차를 분석한 결과, 마찬가지로 고해상도 RGB영상을 포함하여 번들조정하게 되면 기존의 방향각 오차가 한 단위이상 감소하는 것으로 나타났다.
소나무 재선충은 한국과 일본, 중국을 포함한 동아시아 지역의 소나무산림에 막대한 피해를 주는 원인이며, 피해목의 조기 발견과 제거는 재선충 확산을 막는 효과적인 방법이다. 본 논문에서는 드론으로 촬영되고 처리된 RGB 정사영상을 딥러닝 분류에 의한 재선충 피해목 탐색방법을 제안한다. 제안된 방법은 학습영상 데이터가 많지 않다는 가정아래 ResNet18을 백본으로 하는 패치기반의 분류기를 구성하고 RGB 정사영상을 분류하고 그 결과를 heatmap 형태로 만든다. 제작된 정사영상의 heat map는 재선충 피해목의 분포를 알아내고 확산해가는 모습을 관찰할 수 있게 하며, 재선충 피해목 지역의 RGB 분포 특징을 추출해낼 수도 있다. 본 연구의 패치기반 분류기 성능은 94.7%의 정확도를 나타내었다.
드론(drone)과 센서(senor) 적용기술은 농업분야 작물의 성장 정보에 대한 디지털화를 가능하게 하면서 정밀농업 발전을 한층 가속화하고 있다. 이 기술은 자연재해 발생시 농작물 피해량 산정을 가능하게 하고, 현장 방문조사로 진행되고 있는 농작물재해보험 평가방법의 과학화에 기여할 수 있다. 본 연구는 콩을 대상으로 드론 기반 RGB영상을 취득하여 추출된 식생지수로 도복피해율을 산정하는 방법을 개발하고자 하였다. Support Vector Classifier (SVC) 분류 모델은 Crop Surface Model (CSM) 기반의 도복피해율에 식생지수를 추가하여 식생지수 적용성을 검토하였다. 식생지수 중 Visible Atmospherically Resistant Index (VARI), Green Red Vegetation Index (GRVI) 기반 콩의 도복피해율 분류 정확도는 각각 0.709, 0.705로 높은 분류정확도를 나타내었다. 연구 결과, 드론 기반 RGB 영상은 도복피해율 산정에 매우 유용한 도구로 활용 가능하다는 점을 확인할 수 있었다. 본 연구에서 얻어진 결과는 이상기후로 인한 광역 지역 자연재해에 대한 도복피해 산정 시 Sentinel-2, RapidEye 위성과 더불어 2025년 발사 예정인 농림업중형위성 영상과 연계해 활용 가능할 것으로 기대된다.
드론과 센서의 발달이 가속화됨에 따라 드론에 장착된 다양한 센서로 취득된 데이터를 융합하여 새로운 서비스 및 가치를 창출하고 있다. 그러나 데이터 융합을 통한 공간정보 구축은 주로 영상에 의존하여 구축하며, 하드웨어의 사양 및 성능에 따라 데이터 품질이 결정된다. 또한, 고품질 공간정보를 구축하기 위해 고가 장비가 요구되므로 실제 현장에서 사용하기에는 어려운 실정이다. 본 연구에서는 드론에 장착된 RGB 및 THM 카메라를 통해 취득된 저해상도 영상을 딥러닝에 적용하여 초해상화를 수행하고, 이를 통해 생성된 고해상도 영상의 정량적 평가 및 특징점 추출에 대한 평가를 수행하였다. 실험 결과 초해상화를 수행하여 생성된 고해상도 영상은 원본 영상의 특징을 유지하고 있었으며, 해상도가 개선됨에 따라 원본 영상 대비 많은 특징을 추출할 수 있었다. 따라서, 저해상도 영상을 초해상화 딥러닝 모델에 적용하여 고해상도 영상을 생성할 경우 하드웨어에 제약을 받지 않고 고품질의 공간정보를 구축하기 위한 새로운 방법일 것으로 판단하였다.
클로버는 잔디의 대표적 유해 식물로 양지식물인 잔디보다 일찍 생육활동을 시작하여 잔디의 상부에 수관을 형성하고 잔디의 광합성과 성장을 방해한다. 이로 인해 두 식생종 간 경쟁에서 대부분, 클로버 영역은 확산되고 잔디의 경우는 훼손과 고사가 진행되게 된다. 훼손된 부분은 장마 및 생장 휴면 기간 중, 토양표출 확산으로 전개되어 잔디 복구에 심리적 스트레스 및 많은 경제적 부담을 초래하고 있다. 본 연구의 목적은 잔디의 대표적 유해식물인 클로버를 구분하고 클로버의 확산에 따른 훼손지역 분포, 퇴치 전·후의 식생변화 추이를 고찰하는 것이다. 이를 위해 RGB, BG-NIR 센서를 탑재한 융·복합 드론기반 영상을 활용, 3가지 식생지수의 시계열 분석을 통해 선별적 퇴치를 위한 식생구분, 복구전략 수립을 위한 잔디 훼손 분포 등을 고찰하였다. 특히, 인력 및 기기에 의한 선별적 제초 및 예초 전·후, 클로버의 생태변화 추이를 시계열로 분석하였다. 또한, 잔디와 클로버의 성장 중반기 기간 중, 식생 종간 구분 방안도 모색하였다. 연구결과, 잔디와 클로버 생육 특성에 따른 RGB 및 BGNIR 드론영상의 MGRVI 및 NDVI, MSAVI 지수의 시계열 분석을 통해 잔디 훼손과 클로버 퇴치 후 변화 추이 분석의 활용성을 확인하여 잔디 유해 잡초에 대한 효율적 관리의 활용 가능성을 입증할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.