DOI QR코드

DOI QR Code

Drone Image based Time Series Analysis for the Range of Eradication of Clover in Lawn

드론 영상기반 잔디밭 내 클로버의 퇴치 범위에 대한 시계열 분석

  • Lee, Yong Chang (Dept. of Urban Construction Engineering, Incheon National University) ;
  • Kang, Joon Oh (Dept. of Urban Construction Engineering, Incheon National University) ;
  • Oh, Seong Jong (Dept. of Urban Construction Engineering, Incheon National University)
  • Received : 2021.07.12
  • Accepted : 2021.08.23
  • Published : 2021.08.31

Abstract

The Rabbit grass(Trifolium Repens, call it 'Clover') is a representative harmful plant of lawn, and it starts growing earlier than lawn, forming a water pipe on top of the lawn and hindering the photosynthesis and growth of the lawn. As a result, in competition between lawn and clover, clover territory spreads, but lawn is damaged and dried up. Damage to the affected lawn area will accelerate during the rainy season as well as during the plant's rear stage, spreading the area where soil is exposed. Therefore, the restoration of damaged lawn is causing psychological stress and a lot of economic burden. The purpose of this study is to distinguish clover which is a representative harmful plant on lawn, to identify the distribution of damaged areas due to the spread of clover, and to review of changes in vegetation before and after the eradication of clover. For this purpose, a time series analysis of three vegetation indices calculated based on images of convergence Drone with RGB(Red Green Blue) and BG-NIR(Near Infra Red)sensors was reviewed to identify the separation between lawn and clover for selective eradication, and the distribution of damaged lawn for recovery plan. In particular, examined timeseries changes in the ecology of clover before and after the weed-whacking by manual and brush cutter. And also, the method of distinguishing lawn from clover was explored during the mid-year period of growth of the two plants. This study shows that the time series analysis of the MGRVI(Modified Green-Red Vegetation Index), NDVI(Normalized Difference Vegetation Index), and MSAVI(Modified Soil Adjusted Vegetation Index) indices of drone-based RGB and BG-NIR images according to the growth characteristics between lawn and clover can confirm the availability of change trends after lawn damage and clover eradication.

클로버는 잔디의 대표적 유해 식물로 양지식물인 잔디보다 일찍 생육활동을 시작하여 잔디의 상부에 수관을 형성하고 잔디의 광합성과 성장을 방해한다. 이로 인해 두 식생종 간 경쟁에서 대부분, 클로버 영역은 확산되고 잔디의 경우는 훼손과 고사가 진행되게 된다. 훼손된 부분은 장마 및 생장 휴면 기간 중, 토양표출 확산으로 전개되어 잔디 복구에 심리적 스트레스 및 많은 경제적 부담을 초래하고 있다. 본 연구의 목적은 잔디의 대표적 유해식물인 클로버를 구분하고 클로버의 확산에 따른 훼손지역 분포, 퇴치 전·후의 식생변화 추이를 고찰하는 것이다. 이를 위해 RGB, BG-NIR 센서를 탑재한 융·복합 드론기반 영상을 활용, 3가지 식생지수의 시계열 분석을 통해 선별적 퇴치를 위한 식생구분, 복구전략 수립을 위한 잔디 훼손 분포 등을 고찰하였다. 특히, 인력 및 기기에 의한 선별적 제초 및 예초 전·후, 클로버의 생태변화 추이를 시계열로 분석하였다. 또한, 잔디와 클로버의 성장 중반기 기간 중, 식생 종간 구분 방안도 모색하였다. 연구결과, 잔디와 클로버 생육 특성에 따른 RGB 및 BGNIR 드론영상의 MGRVI 및 NDVI, MSAVI 지수의 시계열 분석을 통해 잔디 훼손과 클로버 퇴치 후 변화 추이 분석의 활용성을 확인하여 잔디 유해 잡초에 대한 효율적 관리의 활용 가능성을 입증할 수 있었다.

Keywords

Acknowledgement

본 연구는 2019년 인천대학교 자체연구지원비(과제번호 : 2019-0110)에 의해 이루어진 연구내용으로 인천대학교의 연구지원에 감사드립니다.

References

  1. Agapiou, A., Hadjimitsis, D.G., Alexakis, D.D. (2012), Evaluation of broadband and narrowband vegetation indices for the identification of archaeological crop marks, Remote Sensing, Vol.4, No.12, DOI.3892-3919;10.3390/rs4123892.
  2. Ahn, H.S. (2019) Timely landscaping management and effective control by weed types and characteristics, APTN, http://www.aptn.co.kr/news/articleView.html?idxno=66555/ (last accessed: 27 February 2021).
  3. Barati, S., Rayegani, B., Saati, M., Sharifi, A., and Nasri, M. (2011), Comparison the accuracies of different spectral indices for estimation of vegetation cover fraction in sparse vegetated areas, The Egyptian Journal of Remote Sensing and Space Sciences, Vol.14, No.1, pp.49-56. https://doi.org/10.1016/j.ejrs.2011.06.001
  4. Bendig, J., Yu, K., Aasen, H., Bolten, A., Bennertz, S., Broscheit, J., Martin L.G., and Bareth, G. (2015), Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. International Journal of Applied Earth Observation and Geoinformation, Vol.39, pp.79-87. https://doi.org/10.1016/j.jag.2015.02.012
  5. Chang, A.j., Yeom, J.h., Jung, J.h., and Landivar, J. (2020), Comparision of canopy shape and vegetation indices of cirtus trees derived from UAV multispectral images for characterization of citrus greening disease, Remote Sensing, Vol.12, No.24, DOI.4122;10.3390/rs12244122.
  6. Nature Conservation Bureau(NCB), (2009), Ecosystem Disturbance Wild Animals and Plants Data Book, Ministry of Environment, Publication registration number 11-1480000-001000-01.
  7. Earth Observing System (EOS), 2021, Precision agriculture, Earth Observing System, NASA, http://eos.com/ (last accessed: 17 April 2021).
  8. European Space Agency (ESA), (2021), Sentinel Technical Guides, European Space Agency, Europe, https://sentinels.copernicus.eu/web/sentinel/home/ (last accessed: 13 April 2021).
  9. Hunt, E.R., Doraiswamy, P.C., McMurtrey, J.E., Daughtry, C.S.T., Perry, E.M., and Akhmedov, B. (2013), A visible band index for remote sensing leaf chlorophyll content at the canopy scale, International Journal of Applied Earth Observation and Geoinformation, Vol.21, No.1, pp.103-112. https://doi.org/10.1016/j.jag.2012.07.020
  10. Kang, J.O., Lee, Y.C. (2020), Analysis of crop damage caused by natural disaster in UAS monitoring for smart farm, Geodesy Photogrammetry and Cartography, Vol.38, No.6, pp. 583-589.(in Korean with English abstract)
  11. Korea Turfgrass Research Institute(KTRI), (2021), lawn protector, Korea Turfgrass Research Institute, Sungnam, http://www.ktri.or.kr/ (last accessed 14 April 2021).
  12. Laura, A.M., Miguel, I.A., Matthew, B., Niall, G.B., Juan, A.C., Marta, P., Aida, L.S., Jordi, B., Helena, F., Santiago, L., Ramon, P., and Emmanuel, S. (2020), Remote mapping of foodscapes using sUAS and a low cost BG-NIR sensor, Science of the Total Environment, Vol.718, DOI.https://doi.org/10.1016/j.scitotenv.2020.137357
  13. LDP LLC, (2021), XNiteDJI-X3: DJI Zenmuse X3 Camera Modified for UV-VIS-IR Functionality, LDP LLC, Carlstadt, https://maxmax.com/shopper/category/9489-dji-uv-vis-ir/ (last accessed 17 April 2021).
  14. Lee, Y.C. (2018), Vegetation monitoring using unmanned aerial system based visible, near infrared and thermal images. Journal of Cadastre & Land Informatix, Vol.48, No.1, pp.71-91.(in Korean with English abstract) https://doi.org/10.22640/LXSIRI.2018.48.1.71
  15. L3Harris, (2018), From Data Collections to Custom Geospatial Solutions, L3Harris Geospatial Solutions, State of California, http://harrisgeospatial.com/ (last accessed: 20 April 2021).
  16. Park, N.I. (2012), Weed prevention and practice, Education Special Lecture Materials, Korea Turfgrass Research Institute.
  17. Qi, J., Chehbouni, A., Huete, A.R., Kerr, Y.H., and Sorooshian, S. (1994), A modified soil adjusted vegetation index, Remote Sensing of Environment, Vol.48, No.2, pp.119-126. https://doi.org/10.1016/0034-4257(94)90134-1
  18. Rouse, J.W., Hass, R.H., Schell, J.A., and Deering, D.W. (1973), Monitoring vegetation systems in the great plains with ERTS, Third Earth Resources Technology Satellite-1 Symposium-1973, Goddard Space Flight Center:NASA, 10-14 December, Washington D.C., United States of America, pp.A20:309-317.
  19. Rural Development Administration(RDA), (2020), Annual weed management "Start on the Lunar New Year", Ministry of Culture, https://www.korea.kr/news/pressReleaseView.do?newsId=156371993/ (last accessed: 24 March 2021).
  20. Yang, Z., Willis, P., and Mueller, R. (2008), Impact of band-ratio enhanced AWIFS image to crop classification accuracy, The Future of Land Imaging...Going Operational-2008, Pecora 17, 18-20 November, Denver, Colorado.
  21. Yeom, J.H., Jung, J.H., Chang, A.J., Akash, A., Murilo, M., Andrea, M., and Juan, L. (2019), Comparison of vegetation indices derived from UAV data for differentiation of tillage effects in agriculture, Remote Sencing, Vol.11, No.13, DOI.1548; https://doi.org/10.3390/rs11131548.