• 제목/요약/키워드: 드론 탐지

검색결과 139건 처리시간 0.028초

드론 다중분광영상과 컴퓨터 비전 기술을 이용한 배추 객체 탐지 알고리즘 개발 (Development of Chinese Cabbage Detection Algorithm Based on Drone Multi-spectral Image and Computer Vision Techniques)

  • 류재현;한중곤;안호용;나상일;이병모;이경도
    • 대한원격탐사학회지
    • /
    • 제38권5_1호
    • /
    • pp.535-543
    • /
    • 2022
  • 농업분야에서 드론을 활용하여 작물의 생육을 진단하고 정보를 영상으로 제공하고 있다. 들녘 단위에 대한 고해상도 드론 영상을 활용하는 경우 객체별 생육정보를 생산할 수 있으나 정확하게 작물을 탐지하고 인접한 객체를 효율적으로 구분하기 위한 작업이 요구된다. 본 연구에서는 작물 객체를 탐지하고 위치 정보를 추출하는 알고리즘을 개발하는 것이 목적이다. 드론 다중분광영상과 컴퓨터 비전 기술을 활용하여 객체 탐지를 위한 알고리즘을 개발하였으며, 대상 작물은 가을배추로 선정하였다. 2018년~2020년까지 가을배추를 대상으로 정식 후 7일~15일 사이의 드론 영상을 취득하였으며, 2019년 영상 기반으로 객체 탐지 알고리즘을 개발한 뒤 2018년, 2020년 영상을 기반으로 알고리즘 평가를 수행하였다. 분광반사도 기반 지수와 식생의 분광반사도 특성을 고려하여 식생 지역을 추출하였다. 이후 추출된 식생 지역에서 객체의 크기를 고려하여 팽창(Dilatation), 침식(Erosion), 이미지 분할 등과 같은 모폴로지(Morphology) 기법을 통해 객체 탐지 정확도를 향상시켰다. 개발된 객체 탐지 알고리즘의 정밀도는 95.19% 이상이었으며, 재현율과 정확도는 각각 95.4%, 93.68% 이상이었다. 객체 탐지 알고리즘의 F1-Score는 0.967 이상으로 나타났다. 본 연구에서 개발한 알고리즘을 이용하여 추출된 배추 객체 중심에 대한 위치 정보는 작물의 재배시기에 따라 영농단계별 의사결정 정보를 제공하기 위한 자료로써 활용될 것이다.

드론탐지용 RF스캐너의 성능에 송전탑이 미치는 영향 분석 (Analysis of the Impact of Transmission Towers on the Performance of RF Scanners for Drone Detection)

  • 이문희;방정주
    • 한국ITS학회 논문지
    • /
    • 제23권1호
    • /
    • pp.112-122
    • /
    • 2024
  • 최근 드론과 같은 무인비행장치 기술이 발전함에 따라 환경적, 사회적 및 경제적으로 많은 이점이 있지만, 공항, 공공기관, 발전소, 군 등 국가중요시설에 악의적인 의도를 가질 경우 국가 안전과 국민 생활에 심각한 피해를 줄 수 있다. 이러한 드론의 위협에 대응하기 위해 RF스캐너와 같은 탐지 장비 도입을 시도하고 있다. 특히 변전소, 발전소, 우리나라 전력 계통에 의해 설치된 전력 전송용 송전탑은 RF스캐너 탐지 경로에 송전탑이 위치하면 탐지 성능에 영향을 줄 수 있다. 실험은 상용 드론을 이용하여 드론에서 방사되는 신호 세기 측정하여 감쇠율을 확인하였다. 평균 감쇠율과 최대 감쇠율은 2.4 GHz와 5.8 GHz 대역에서 유사한 경향을 보였고, 구조물의 밀도에도 영향을 받는 것을 알 수 있다.

산업경쟁력을 위한 드론과의 쉬운 상호작용 기술

  • 조광수
    • 광학세계
    • /
    • 통권158호
    • /
    • pp.55-57
    • /
    • 2015
  • 여기저기서 드론이 뜨고 있다. 아마존이 날아오른 드론으로 고객의 문 앞까지 배달하는 모습은 일대 장관이었다. 이제 웬만한 방송에서 하늘 높이 오른 드론으로 내려다본 모습을 전송하는 것은 그저 일상일 뿐이다. 뿐만 아니라, 사람이 직접 닿을 수 없는 곳에서 드론으로 사람을 찾는다거나, 드론을 통해 고층건물의 안전도를 검사한다거나, 정찰을 하는 등 다양한 활용도가 돋보인다. 라스베가스의 세계가전전시회(CES)에서 바르셀로나의 모바일월드콩그레스(MWC)에서 그리고 뉴욕의 장난감전시회 에서도 드론은 스타로 부상했다. 이제 드론은 대중화와 상업적 성공의 기로에 서 있다. 이를 위해서는 기계적 성능이상으로 중요한 것이 드론과 사용자간의 상호작용을 통해 이루어내는 사용자 경험이다. 즉 드론을 얼마나 쉽고 편하고 정확하고 안전하게 조종할 수 있도록 만드는가가 차별화와 경쟁력의 시작이다. 만약 드론이 지금처럼 조종하기 어렵고 심지어 인명과 재산을 위협한다고 인식되면 산업적 잠재성은 그저 한여름 밤의 꿈으로 사그러들 수밖에 없다. 몇 가지 사례를 보자. 지난 2월 미국 Fox TV 생방송에서 Popular Science 잡지 편집장 Dave Mosher는 드론의 안전성에 관해서 말하고 있었다. 그 때 데모를 위해 날던 드론이 갑자기 균형을 잃으면서 추락하였다. 이 사고로 인해 드론이 안전하지 않을 수 있다는 인식이 퍼지게 되었다. 경미한 사고지만 심각한 위협감을 일으키기도 한다. 레이더에 탐지되지 않던 드론이 미국 백악관 앞마당에 추락한 것이 그런 예이다. 어떤 사용자는 재미삼아 드론을 구름 위까지 날려 보냈다. 그러더니 드론이 제어력을 상실하였고, 결국 추락하고 말았다. 다행히도 누군가의 머리 위로 떨어지지는 않았다.

  • PDF

드론영상을 이용한 소규모 가스 배출시설 탐지 가능성 분석 (Availability Analysis on Detection of Small Scale Gas Emission Facilities using Drone Imagery)

  • 신정일;김익재;황동현;이종민;임성하
    • 지적과 국토정보
    • /
    • 제47권1호
    • /
    • pp.213-223
    • /
    • 2017
  • 최근 우리나라의 대기환경이 악화되고 있으며 대기질에 대한 국민적 관심이 증가하고 있다. 다양한 관측수단이 대기환경 모니터링에 이용되고 있으나, 배출시설에 대한 공간정보가 부재한 실정에서 관측자의 경험과 판단에 의존하고 있다. 본 연구에서는 대기오염물질 배출시설 모니터링을 위한 드론 영상의 활용 가능성을 판단하고자 하였다. 드론 정사영상에 질감 변환 기법을 적용하여 공장지붕에 분포하는 소규모 가스 배출시설을 탐지하였고, 오탐지율을 감소시키기 위하여 수치표면모델(DSM)로 계산한 경사도 자료를 이용하였다. 그 결과 약 80%의 정탐지율과 40%의 오탐지율을 보여주어 소규모 가스 배출시설 탐지에 있어 드론 영상의 활용 가능성이 높다고 할 수 있다. 향후 정탐지율의 향상 및 오탐지율의 감소와 관련된 다양한 시도와 연구가 필요하다. 또한 이러한 결과들을 바탕으로 대기오염물질 배출시설에 대한 3차원 공간정보를 포함하는 데이터베이스를 구축할 필요가 있다.

YOLO를 이용한 드론탐지 시스템 (Drone detection system using YOLO)

  • 신준표;김유민;최규민;성승민;이병권
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제63차 동계학술대회논문집 29권1호
    • /
    • pp.233-236
    • /
    • 2021
  • 본 논문에서는 국내 드론 사용량이 증가하고 있으나 드론을 제재하기 위한 수단과 AI를 활용한 드론 콘텐츠가 부족하다. 상기 문제점을 해결하기 위해 Darknet 과 YOLO_mark를 사용하여 디바이스를 학습시켜 손쉽게 드론 인식 및 구별을 할 수 있게 구현하였다. 이를 통해 기존 드론 제재 수단의 한계를 극복하고 손쉽게 이용할 수 있다. 나아가 본 논문을 이용하여 군◦경에서 드론 식별 등으로 활용할 수 있다.

  • PDF

딥러닝 객체 탐지 기술을 활용한 드론용 셀카 촬영 앱 설계 (Design of Self-Camera App for Drone using Object Detection Technique based on Deep Learning)

  • 하옥균;박준우;김대영;신재욱;고일남
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2019년도 제59차 동계학술대회논문집 27권1호
    • /
    • pp.297-298
    • /
    • 2019
  • 본 논문에서는 드론용 오픈 소스 API를 이용하여 셀프 카메라 촬영이 가능한 드론용 앱을 설계한다. 특히, 딥러닝 기반의 YOLO 객체 탐지 기술을 적용하여 배경 속에서 사람을 탐지하여 개인 및 단체 사진 촬영이 가능하도록 설계한다. 개발하는 셀프 카메라 앱은 기체의 자동 회전 및 선회 기반 연속 촬영 기능을 포함하여 다양한 형태의 인물 사진 촬영이 가능하다. 개발된 앱 기술을 기반으로 선회 및 회전을 통한 경비 구역의 침입자 촬영을 위한 시스템 및 드론 제어 기술에 활용하고자 한다.

  • PDF

위성 및 드론 영상을 이용한 해안쓰레기 모니터링 기법 개발 (Development of Marine Debris Monitoring Methods Using Satellite and Drone Images)

  • 김흥민;박수호;한정익;예건희;장선웅
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.1109-1124
    • /
    • 2022
  • 본 연구에서는 단시간 내 광범위한 지역에 대한 해양쓰레기 발생 실태 파악이 가능하도록 위성 및 드론다중분광 영상을 이용한 해안쓰레기 모니터링 기법을 제안한다. Sentinel-2 위성 영상을 이용한 해안쓰레기 탐지를 위해 multi-layer perceptron (MLP) 모델을 적용하였고, 드론 다중분광 영상을 이용한 해안쓰레기 탐지를 위해 딥러닝 모델 중 U-Net, DeepLabv3+ (ResNet50), DeepLabv3+ (Inceptionv3)의 탐지 성능평가 및 비교를 수행하였다. 위성 영상을 이용한 해안쓰레기 탐지 결과 F1-Score 0.97을 보였다. 드론 다중분광 영상을 이용한 해안쓰레기 탐지는 초목류와 플라스틱류에 대한 탐지를 수행하였고, 탐지 결과 DeepLabv3+ (Inceptionv3) 모델이 mean Intersection over Union (mIoU) 0.68로 가장 우수한 성능을 보였다. 초목류는 F1-Score 0.93, IoU는 0.86을 보인 반면에 플라스틱류의 F1-Score 0.5, IoU는 0.33으로 낮은 성능을 보였다. 그러나 플라스틱류 마스크 영상 생성을 위해 적용된 분광 지수식의 F1-Score는 0.81로 DeepLabv3+ (Inceptionv3)의 플라스틱류 탐지 성능보다 높은 성능을 보이며, 분광 지수식을 이용한 플라스틱류 모니터링이 가능할 것으로 판단된다. 본 연구에서 제안된 해안쓰레기 모니터링 기법을 통해 해안쓰레기 발생에 대한 정량적 자료 제공과 더불어 해안쓰레기 수거·처리 계획 수립에 활용할 수 있다.

네트워크 드론의 영상 처리를 통한 사람 인식 시스템 제안 (Proposal of Network Drones Image Processing for Human Recognition System)

  • 김자영;이주현;정진웅;추현승
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 추계학술발표대회
    • /
    • pp.645-647
    • /
    • 2018
  • 최근 IoT의 기술의 발달로 사용자 인식에 관한 연구가 주목을 받고 있다. 사용자 인식은 각 사용자만의 특징에 근거하여 특정 사용자를 인식하는 기술이다. 사용자 인식과 관련하여 홍채나 지문인식 등과 같은 생체 인식, 얼굴 인식 그리고 걸음걸이 인식 등에 관한 연구들이 진행되고 있다. 다양한 방식은 각각의 인식률을 높이기 위해 노력하고 있지만, 인식하고자 하는 사용자의 상황에 따라 인식률에 영향을 받게 된다. 본 연구에서는 다양한 방식을 여러 단계로 구성하여 다양한 상황에 놓인 사용자를 인식하기 위한 방법을 연구한다. 제안 시스템은 드론에서 촬영된 영상을 수신하는 것을 기반으로 하여 얼굴인식과 걸음걸이 인식을 이용한 방식이다. 1차적으로 사람의 얼굴을 탐지를 하고, 사람의 얼굴이 탐지되었을 때는 얼굴 인식을 수행한다. 탐지하지 못했을 경우 걸음걸이 인식을 수행하여 인식률을 향상시킨다.

산림병해충 피해의심목 자동탐지 알고리즘 개발 연구 (A study on the development of an automatic detection algorithm for trees suspected of being damaged by forest pests)

  • 이후동;이성희;이영진
    • 한국지리정보학회지
    • /
    • 제25권4호
    • /
    • pp.151-162
    • /
    • 2022
  • 최근 우리나라의 산림은 지속적인 산림재해로 인해 피해가 누적되고 있어 산림을 관리하기 위한 모니터링 기술이 조명받고 있으며, 산림재해 피해대상지의 규모가 큰 지형 특성으로 인해 드론, 인공지능, 빅데이터 등을 활용한 기술들이 연구되고 있다. 본 연구에서는 산림재해의 병해충을 모니터링하기 위해 딥러닝과 드론을 활용하여 산림 병해충 피해 의심목을 자동으로 탐지하는 산림 병해충 자동탐지 알고리즘 개발을 위한 표준 데이터 세트를 구축하였다. 객체검출 알고리즘으로서 YOLO 알고리즘을 활용한 실험결과에서는 YOLOv4-P7 모델이 재현율 69.69%와 정밀도 69.15%로 가장 높게 나타났으며, 이미지 사이즈가 큰 정사영상인 검출대상임을 고려할 때 산림병해충 피해의심목 자동탐지 알고리즘으로 YOLOv4-P7이 적합함을 확인하였다.

드론을 이용한 보도블럭 탈락 탐지 가능성 연구 (A Study for Possibility to Detect Missing Sidewalk Blocks using Drone)

  • 신정일
    • 한국산학기술학회논문지
    • /
    • 제22권5호
    • /
    • pp.34-41
    • /
    • 2021
  • 보도는 보행자의 안전하고 쾌적한 통행을 목표로 하는 시설로, 다양한 재질의 블럭으로 포장되어 있다. 현재 우리나라는 보도 포장상태에 대한 정량적인 조사 방법이 부재하여 효율적인 조사 방법의 개발이 필요한 실정이다. 최근 드론은 다양한 분야에서 효율적인 조사 도구로 활용되고 있으나, 보도의 포장상태를 조사한 사례는 제한적인 실정이다. 본 연구는 드론을 이용한 보도블럭 파손 탐지 방법 개발을 위한 초기 연구로써 보도블럭의 탈락에 국한하여 탐지 가능성을 파악하고자 하였다. 이를 위하여 보도블럭을 인위적으로 제거하여 탈락을 상황을 모의하였고, 드론을 이용하여 0.7 cm 해상도의 영상을 촬영하였다. 영상 전처리를 통해 획득된 포인트 클라우드 자료의 특성으로 보도블럭 탈락 부위에서 포인트들이 갖는 표고의 분산이 높게 나타났다. 이러한 특성을 이용하여 보도 영역에 해당하는 격자에 포함되는 포인트들의 표고에 대한 분산에 4가지 임계치를 적용하여 보도블럭 탈락 부위를 탐지하는 실험을 진행하였다. 그 결과 정탐지율 70-80 %, 누락오차 20-30 %, 추가오차 2 % 이하의 탐지정확도를 획득하여 보도블럭 탈락의 탐지 가능성이 높은 것으로 판단된다. 본 연구의 결과는 제한적인 환경에서 모의된 보도블럭 탈락을 대상으로 하였으므로 향후 실제 환경을 고려한 추가 연구를 통해 효율적이고 정량적인 보도블럭 파손 탐지 방법이 개발될 수 있을 것으로 기대된다.