• Title/Summary/Keyword: 드론 소음 측정

Search Result 2, Processing Time 0.02 seconds

Remote Fault Detection in Conveyor System Using Drone Based on Audio FFT Analysis (드론을 활용하고 음성 FFT분석에 기반을 둔 컨베이어 시스템의 원격 고장 검출)

  • Yeom, Dong-Joo;Lee, Bo-Hee
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.10
    • /
    • pp.101-107
    • /
    • 2019
  • This paper proposes a method for detecting faults in conveyor systems used for transportation of raw materials needed in the thermal power plant and cement industries. A small drone was designed in consideration of the difficulty in accessing the industrial site and the need to use it in wide industrial site. In order to apply the system to the embedded microprocessor, hardware and algorithms considering limited memory and execution time have been proposed. At this time, the failure determination method measures the peak frequency through the measurement, detects the continuity of the high frequency, and performs the failure diagnosis with the high frequency components of noise. The proposed system consists of experimental environment based on the data obtained from the actual thermal power plant, and it is confirmed that the proposed system is useful by conducting virtual environment experiments with the drone designed system. In the future, further research is needed to improve the drone's flight stability and to improve discrimination performance by using more intelligent methods of fault frequency.

A method for localization of multiple drones using the acoustic characteristic of the quadcopter (쿼드콥터의 음향 특성을 활용한 다수의 드론 위치 추정법)

  • In-Jee Jung;Wan-Ho Cho;Jeong-Guon Ih
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.3
    • /
    • pp.351-360
    • /
    • 2024
  • With the increasing use of drone technology, the Unmanned Aerial Vehicle (UAV) is now being utilized in various fields. However, this increased use of drones has resulted in various issues. Due to its small size, the drone is difficult to detect with radar or optical equipment, so acoustical tracking methods have been recently applied. In this paper, a method of localization of multiple drones using the acoustic characteristics of the quadcopter drone is suggested. Because the acoustic characteristics induced by each rotor are differentiated depending on the type of drone and its movement state, the sound source of the drone can be reconstructed by spatially clustering the results of the estimated positions of the blade passing frequency and its harmonic sound source. The reconstructed sound sources are utilized to finally determine the location of multiple-drone sound sources by applying the source localization algorithm. An experiment is conducted to analyze the acoustic characteristics of the test quadcopter drones, and the simulations for three different types of drones are conducted to localize the multiple drones based on the measured acoustic signals. The test result shows that the location of multiple drones can be estimated by utilizing the acoustic characteristics of the drone. Also, one can see that the clarity of the separated drone sound source and the source localization algorithm affect the accuracy of the localization for multiple-drone sound sources.