• Title/Summary/Keyword: 두부공업폐수

Search Result 6, Processing Time 0.021 seconds

Production of ${\delta}-Aminolevulinic$ Acid in Soybean Curd Wastewater by Rhodobacter capsulatus KK-10 (두부공업폐수에서 Rhodobacter capsulatus KK-10을 이용한 ${\delta}-Aminolevulinic$ Acid의 생산)

  • Cheong, Dae-Yeol;Choi, Yang-Mun;Yang, Han-Chul;Cho, Hong-Yon
    • Applied Biological Chemistry
    • /
    • v.40 no.6
    • /
    • pp.556-560
    • /
    • 1997
  • The removal efficiency of COD and the production of ${\delta}-aminolevulinic$ acid (ALA) were concurrently investigated for both purifying the soybean curd wastewater of high BOD and utilizing the wastewater as a renewable substrate of ALA production using Rhodobacter capsulatus KK-10. Its wastewater was a favorable media for the growth of photosynthetic bacteria in terms of its environmental characteristics having COD/BOD rate of 0.98, ratio of BOD : N : P=100 : 6 : 4, BOD/N ratio of 17.2, lactic acid of 1,080 ppm. Its COD value wastewater was decreased to 94% and dry cell weight was approached to about 1.2 g/l after cultivation of the photosynthetic bacteria for 4 days. By the addition of 15 mM levulinic acid (LA) into the wastewater at the middle log phase of cell growth, the amount of ALA secreted was 55 mg/l. The ALA production was considerably increased to 114 mg/l under the cultural condition of 15 mM supplementations of glycine and succinate with LA at the same period. Furthermore the maximum ALA production of 120 mg/l and COD removal efficiency of 92% were accomplished in the soybean curd wastewater enriched with one addition of 15 mM LA and three serial additions 15 mM ALA precursors.

  • PDF

Production of Microbial Pesticides by Soybean Curd Waste-water in Bacillus thuringiensis subsp. kurstaki HD-1 (Bacillus thuringiensis kurstaki HD-1 유래 미생물살충제 생산을 위한 두부공업폐수의 이용)

  • Ok, Min;Kim, Dae-Jin;Lee, Young-Chun;Choi, Yong-Lak;Cho, Young-Su
    • Journal of Life Science
    • /
    • v.12 no.3
    • /
    • pp.369-373
    • /
    • 2002
  • The waste-water from the industry for production of a soybean curd (the soybean curd waste-water) was investigated to use for the substrate to produce the endotoxin of Bacillus thuringiensis subsp. kurstaki HD-1 used as one of well known microbial pesticides. The pH of the soybean curd waste-water was 9.8 and its chemical oxygen demand (COD), total nitrogen (TN) and phosphate (TP) were 276.0, 71.1 and 5.5mg/$\ell$, respectively. The higher was the concentration of the soybean curd waste-water in the medium, the more endotoxin was produced. Maximal sporulation occurred at which concentration of $K_2$HPO$_4$in the medium supplied with the soybean curd waste-water was 1% (w/v). Production of the endotoxin with the optimized medium supplied with the soybean curd waste-water was 1.5 times higher than that without the soybean curd waste-water. The soybean curd waste-water was found to be suitable substrate for production of the endotoxin of Bacillus thuringiensis subsp. kurstaki HD-1.

Optimization of Bioflocculant Production Conditions for Organic Wastewater Treatment with Aeromonas hydrophila KH-54 (Aeromonas hydrophila KH-54가 분비하는 유기폐수처리용 생물응집제 생산조건의 최적화)

  • Seo, Ho-Chan;Lee, Jung-Suk;Yun, Zu-Whan;Yi, Yun-Seok;Cho, Hong-Yon
    • Applied Biological Chemistry
    • /
    • v.41 no.6
    • /
    • pp.465-470
    • /
    • 1998
  • For the need of bio-degradable flocculant in stage of wastewater treatment, some cultural conditions of bioflocculant production were optimized with Aeromonas hydrophila KH-54. About 260 strains of type culture and bacteria isolated from marsh, pond, activated sludge, etc were examined for their ability to flocculate kaolin particles and swine wastewater. Among them, KH-54 showed the highest flocculating activity and was identified as Aeromonas hydrophila according to the cultural, morphological and physiological properties. The maximum production of the flocculant secreted by Aeromonas hydrophila KH-54 was observed in culture medium containing 2.0% mannitol, 0.05% ammonium chloride, 0.02% potassium phosphate dibasic, 0.01% $MgSO_4{\cdot}7H_2O$ and 0.05% yeast extract at initial pH 7.0 when cultured on rotary shaker controlled at $25^{\circ}C$ and 150 rpm. Under the optimized condition, the flocculating ability reached to 770 units/ml of kaolin flocculating activity and 81% of NTU removal efficiency against swine wastewater after 4 days cultivation. The bioflocculant was also effective on various organic wastewaters other than swine wastewater, showing NTU removal rate ranging from 92% to 34%.

  • PDF

Efects of Chitosan on Cell Flocculation in Soybean Curd Wastewater Treated by Photosynthetic Bacteria (Chitosan에 의한 광합성세균 처리 두부공업폐수의 균체 응집효과)

  • 오준현;조홍연;양한철
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.6
    • /
    • pp.763-769
    • /
    • 1995
  • As a mean to recover photosynthetic bacterial(PSB) cells and its practical uses in food industrial wastewater treatment, various biodegradable polyelectrolytes were first investigated for flocculation of suspended colloids in the PSB treatment process of soybean curd wastewater. Anionic polyelectrolytes such as sodium alginate and carrageenan were not effective but a cationic polyelectrolyte chitosan isolated from Portunus trituberclatus showed very effective flocculation activity. The concentration of chitosan, pH and temperature of wastewater for maximal flocculation were 40 mg/l, pH 7 and room temperature, respectively. Test using deacetylated chitosan to various degree showed higher flocculating activities in samples deacetylated over 75% and time for maximum flocculation was 40 min by stirring slowly under the above optimal conditions. Chitosan was not only effective to flocculate cells but also removed COD and MLSS of the wastewater. COD of 42% and MLSS of 87% were removed by addition of chitosan to the soybean curd wastewater treated with PSB.

  • PDF

Production of Photosynthetic Bacterial Cells of Rhodospirillum rubrum P17 from Soybean Curd Waste Water (두부공업폐수를 이용한 광합성세균 Rhodospirillum rubrum P17의 균체생산)

  • 강성옥;조경덕;임완진;조흥연;양한철
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.6
    • /
    • pp.622-627
    • /
    • 1993
  • Rhodospirillum rubrum P17 was used to investigate the pontential for the treatment of soybean curd waste and for the utilization of the biomass produced. The maximal biomass production and COD removal from the waste water were obtained at 30C, pH 7.0 under 2,500lux production and 50 rpm of agitation. The initial COD level of the soybean curd waste water was 3,240mg/l, and after 4 days of cultivation in batch culture, 3.46g/l of cells was obtained and COD level of the waste water reduced to 150mg/l (COD removal rate 95.4%).

  • PDF

Starter culture production of Rhodospirillum rubrum P17 for use in treatment of organic waste water (유기폐수처리를 위한 Rhodospirillum rubrum P17의 종균생산)

  • Cho, Kyung-Dug;Kang, Seong-Og;Lim, Wang-Jin;Cho, Hong-Yon;Yang, Han-Chul
    • Applied Biological Chemistry
    • /
    • v.36 no.6
    • /
    • pp.488-494
    • /
    • 1993
  • A photosynthetic bacterium strain P17 having high growth rate and assimilating ability of organic acids was isolated from several soil samples, which was identified as Rhodospirillum rubrum. Cultural conditions of the strain P17 were examined for the production of starter culture used in the treatment of organic waste water. The addition of organic acids mixture as carbon source containing 0.2% Na-acetate, 0.1% Na-propionate and 0.2% Na-lactate and 0.1% of yeast extract as growth factor stimulated the cell growth. The maximal cell production was obtained at $30^{\circ}C$, pH 7.0, 2,500 lux of illumination and $50{\sim}100\;rpm$ of agitation. Under the optimal conditions of batch and fed-batch culture systems in a Jar fermentor, 5.17 g/l and 7.93 g/l of cells were obtained after S days of cultivation, respectively. In continuous culture system, the cell productivity was 0.206 g/l/h at a dilution rate of 0.21 $h^{-1}$. When R. rubrum P17 was cultivated in a soybean curd waste water, initial COD level(3,240 mg/l) of the waste water was reduced to 250 mg/l after 4 days of cultivation.

  • PDF