• Title/Summary/Keyword: 두께 변형률 분포

Search Result 57, Processing Time 0.019 seconds

Finite Element Simulation of a Superplastic Sheet Metal Forming Process with a Pressure Cycle Control Algorithm (초소성 박판 성형 공정의 유한 요소 압력 제어 해석)

  • 한수식;양동열;이종수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.5
    • /
    • pp.1563-1571
    • /
    • 1991
  • 본 연구에서는 가상일 원리로 부터 유한 요소 수식화를 updated-Lagrangian 형태로 유도하였으며, 유도된 수식화를 연속체 유한 요소로 유한 근사화 하였다. 이 때 초소성 재료의 거동은 비압축성, 비선형 점성 유ㄷ옹으로 묘사하였다. 유한 요소 프로그램은 성형 기구 해석과 하중 압력을 제어하는 기법으로 구성되어 있으며 하중 압력의 제어는 성형 시간이 최소가 되게 하기 위하여 변형률 속도 민감 계수가 최대가 되고, 국부 변형에 의한 두께 감소를 방지하며 변형률 속도는 일정하게 유지되면서 성 형이 될 수 있도록 하였다. 즉 하중 압력 제어는 상당 변형률 속도가 최대가 되게하 여 성형 시간을 최소화하게 구성하였다.개발된 유한 요소 프로그램은 정수압 벌징 가공에 적용하였으며 최적 압력 시간 선도, 성형 형상, 두께 및 두께 변형률 분포, 상 당 변형률 분포 등을 구하였다.

Tension Tests of Copper Thin Films (구리박막 시험편의 인장시험)

  • Park, Kyung Jo;Kim, Chung Youb
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.8
    • /
    • pp.745-750
    • /
    • 2017
  • Tension tests for copper thin films with thickness of $12{\mu}m$ were performed by using a digital image correlation method based on consecutive digital images. When calculating deformation using digital image correlation, a large deformation causes errors in the calculated result. In this study, the calculation procedure was improved to reduce the error, so that the full field deformation and the strain of the specimen could be accurately and directly measured on its surface. From the calculated result, it can be seen that the strain distribution is not uniform and its variation is severe, unlike the distribution in a common bulk specimen. This might result from the surface roughness introduced in the films during the fabrication process by electro-deposition.

Axisymmetric Simulation of Nonpremixed Counterflow Flames - Effects of Global Strain Rate on Flame Structure - (비예혼합 대향류 화염의 축대칭 모사 - 변형률이 화염구조에 미치는 영향 -)

  • Park Woe-Chul
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.2 s.23
    • /
    • pp.42-47
    • /
    • 2004
  • The axisymmetric methane-air counterflow flame in microgravity was simulated to investigate effects of the global strain rate on the flame structure. The flame shapes and profiles of temperature and the axial velocity for the mole fraction of methane in the methane-nitrogen fuel stream, Xm= 20, 50, $80\%$, and the global strain rate, ag= 20, 60, 90 $s^{-1}$ each mole fraction were compared. The profiles of the temperature and axial velocity of the axisymmetric simulations were in good agreement with those of OPPDIF, an one-dimensional flamelet code. It was confirmed that the flame is stretched more and the flame radius increases and the flame thickness decreases as the global strain rate increases.

  • PDF

Prediction of Maximum Bending Strain of a Metal Thin Film on a Flexible Substrate Using Finite Element Analysis (유한요소해석을 통한 유연기판 위의 금속 박막의 최대 굽힘 변형률 예측)

  • Jong Hyup Lee;Young-Cheon Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.1
    • /
    • pp.23-28
    • /
    • 2024
  • Electronic products utilizing flexible devices experience harsh mechanical deformations in real-use environments. As a result, researches on the mechanical reliability of these flexible devices have attracted considerable interest among researchers. This study employed previous bending strain models and finite element analysis to predict the maximum bending strain of metal films deposited on flexible substrates. Bending experiments were simulated using finite element analysis with variations in the material and thickness of the thin films, and the substrate thickness. The results were compared with the strains predicted by existing models. The distribution of strain on the surface of film was observed, and the error rate of the existing model was analyzed during bending. Additionally, a modified model was proposed, providing mathematical constants for each case.

Estimation of Hardfacing Material and Thickness of STD61 Hot-Working Tool Steels Through Three-Dimensional Heat Transfer and Thermal Stress Analyses (3 차원 열전달/열응력 해석을 통한 STD61 열간 금형강의 하드페이싱 재료 및 두께 예측)

  • Park, Na-Ra;Ahn, Dong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.427-436
    • /
    • 2014
  • The goal of this paper is to estimate proper hardfacing material and thickness of STD61 hot-working tool steel through three-dimensional heat transfer and thermal stress analyses. Stellite6, Stellite21 and 19-9DL superalloys are chosen as alternative hardfacing materials. The influence of hardfacing materials and thicknesses on temperature, thermal stress and thermal strain distributions of the hardfaced part are investigated using the results of the analyses. From the results of the investigation, it has been noted that a hardfacing material with a high conductivity and a thinner hardfaced layer are desired to create an effective hardfacing layer in terms of heat transfer characteristics. In addition, it has been revealed that the deviation of effective stress and principal strain in the vicinity of the joined region are minimized when the Stellite21 hardfaced layer with the thickness of 2 mm is created on the STD61. Based on the above results, a proper hardfacing material and thickness for STD61 tool steel have been estimated.

절삭가공 해석을 위한 유한요소법의 적용

  • 김국원;안태길;이우영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.81-81
    • /
    • 2003
  • 최근 유한요소법을 이용하여 절삭가공을 해석하는 연구가 많이 발표되고 있다. 이 때 가장 문제되는 점이 피삭재에서 칩으로 분리하는 조건이다. 일반적으로 칩 분리 조건이라 일컬어지는 이 조건을 어떻게 설정할 것인가에 대해 현재까지도 많은 연구가 이루어지고 있다. 현재까지 제시된 칩 분리 판별 조건은 두 가지 유형 - 기하학적, 물리적으로 나눌 수 있다. 기하학적 칩 분리 조건은 공구 끝단과 바로 앞 요소의 거리를 기준으로 정해진 특정한 값에 도달하면 요소가 분리되는 혹은 없어지는 방법을 이용하는 것이며(Fig. 1 참조), 물리적 칩 분리 조건은 요소 내의 소성변형률 혹은 변형률 에너지 밀도함수 등의 값을 기준으로 분리시키는 방법이다. 본 연구에서는 상용 유한요소 해석 프로그램인 ANSYS를 이용하였으며 이 프로그램에서 제공하는 element birth/kill 기법을 이용하여 기하학적 판별조건에 도달하면 공구 끝단 앞의 요소가 사라지는 방법을 취하였다. Fig. 2는 절삭가공을 위한 유한요소 모델링을 나타낸다. 칩-공구 접촉 부위에 접촉요소를 사용하였으며, 피삭재의 왼쪽과 아래쪽 부위는 각각 변위구속을 하였다. 공구의 이동은 변위경계조건의 값을 변화시킴으로써 구현하였다. 절삭력을 비교함으로써 해석결과의 타당성을 검토하였으며, 피삭재 내의 응력, 변형률 분포 등을 살펴보았다.

  • PDF

Study of Blank Thickness Optimization in Free Bulging for Maximizing Bulged Height (가스압력을 이용한 자유벌징에서 성형양 최대화를 위한 두께 분포 최적화)

  • Yoo, Joon-Tae;Yoon, Jong-Hoon;Lee, Ho-Sung;Youn, Sung-Kie
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.8
    • /
    • pp.899-904
    • /
    • 2014
  • Thickness profiled blank is designed using optimization techniques for maximizing the bulged heights during the free bulging of Inconel 718. The thickness of the blank was described by the Bezier curve and the locations of the control points were used as the design variables for optimization. The maximization of the bulged heights within the limited strain range served as the objective function and constraints for optimization. The equivalent static loads method for non-linear static response structural optimization (ESLSO) was used and the result of the optimization revealed 22 increased bulged heights. A free bulging test using a blank with an optimized profile was conducted to verify the optimization process. The results were compared with those of numerical analysis in terms of bulged height and deformed shape.

Structural Design and Evaluation of Six-component Wheel Dynamometer (6축 휠 동력계의 구조설계 및 평가)

  • Kim, Man Gee;Joo, Jin Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.53-63
    • /
    • 2016
  • Wheel dynamometers are used to measure dynamic load that is conveyed from the road to a vehicle while driving. In this paper, two types of six-component wheel dynamometers utilizing shear deformation and bending deformation were designed and evaluated. Prior to designing the shear and bending type wheel dynamometers, the shear and bending deformation behaviors of the basic structure of the wheel dynamometer itself were analyzed using finite element analysis. Strain analysis was performed repeatedly in order to obtain a similar output sensing strain for each load component. The design was modified with a bridge circuit in order to minimize coupling strain. The results indicated that the shear type dynamometer was expected to obtain stable characteristics due to uniform strain distribution while the bending type dynamometer was expected to obtain high-quality sensitivity performance due to consistent output sensitivity.

Forming Limit of Mash-seam Welded Sheets (매쉬-심 용접 판재의 성형 한계)

  • 김형목;허영무;양대호;서대교
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.222-225
    • /
    • 1997
  • This paper describes experimental investigation on the forming limit for mash-seam welded sheets. The uniaxial tensile test was conducted to evaluate the mechanical properties of weld bead. Experimental forming limit diagrams were investigated for the different thicknesses and properties of welded sheets.

  • PDF

Plane-wave Full Waveform Inversion Using Distributed Acoustic Sensing Data in an Elastic Medium (탄성매질에서의 분포형 음향 센싱 자료를 활용한 평면파 전파형역산)

  • Seoje, Jeong;Wookeen, Chung;Sungryul, Shin;Sumin, Kim
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.4
    • /
    • pp.214-216
    • /
    • 2022
  • Distributed acoustic sensing (DAS), an increasingly growing acquisition technique in the oil and gas exploration and seismology fields, has been used to record seismic signals using optical cables as receivers. With the development of imaging methods for DAS data, full waveform inversion (FWI) is been applied to DAS data to obtain high-resolution property models such as P- and S-velocity. However, because the DAS systems measure strain from the phase distortion between two points along optical cables, DAS data must be transformed from strain to particle velocity for FWI algorithms. In this study, a plane-wave FWI algorithm based on the relationship between strain and horizontal particle velocity in the plane-wave assumption is proposed to apply FWI to DAS data. Under the plane-wave assumption, strain equals the horizontal particle velocity, which is scaled by the velocity at the receiver position. This relationship was confirmed using a numerical experiment. Furthermore, 4-layer and modified Marmousi-2 velocity models were used to verify the applicability of the proposed FWI algorithm in various survey environments. The proposed FWI was implemented in land and marine survey environments and provided high-resolution P- and S-velocity models.