• Title/Summary/Keyword: 동탄2

Search Result 126, Processing Time 0.025 seconds

Factors Influencing Patient Safety Nursing Activities of Intensive Care Unit Nurses (중환자실 간호사의 환자안전간호활동 영향요인)

  • Kim, Jae Eun;Song, Ju Eun;Ahn, Jeong Ah;Boo, Sunjoo
    • Journal of Korean Critical Care Nursing
    • /
    • v.14 no.2
    • /
    • pp.12-23
    • /
    • 2021
  • Purpose : The purposes of this study were to examine the levels of job stress, perceptions of the patient safety culture, and patient safety nursing activities, and to identify factors influencing patient safety nursing activities among intensive care unit (ICU) nurses. Methods : For this cross-sectional study, data were collected from 161 ICU nurses working in two university-affiliated hospitals in Gyeonggi-do between June 30 and July 30, 2020. The data were analyzed with descriptive statistics, an independent t-test, a one-way ANOVA, the Pearson correlation method, and multiple regression using the SPSS program. Results : The average levels of job stress, perception of patient safety culture, and patient safety nursing activities were 3.48, 3.44, and 4.45 out of 5, respectively. Multiple regression showed that perception of patient safety culture and career in current workplace were found to be statistically significant correlates of patient safety nursing activities. Conclusion : In order to promote patient safety nursing activities, patient safety culture needs to be incorporated into the education of ICU nurses. Perception of patient safety should be enhanced to improve patients safety nursing activity.

Evaluation of the Dynamic Modulus by using the Impact Resonance Testing Method (비파괴충격파 시험법을 이용한 동탄성계수 평가)

  • Kim, Dowan;Jang, ByungKwan;Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.16 no.3
    • /
    • pp.35-41
    • /
    • 2014
  • PURPOSES : The dynamic modulus for a specimen can be determined by using either the non-destructed or destructed testing method. The Impact Resonance Testing (IRT) is the one of the non-destructed testing methods. The MTS has proved the source credibility and has the disadvantages which indicate the expensive equipment to operate and need a lot of manpower to manufacture the specimens because of the low repeatability with an experiment. To overcome these shortcomings from MTS, the objective of this paper is to compare the dynamic modulus obtained from IRT with MTS result and prove the source credibility. METHODS : The dynamic modulus obtained from IRT could be determined by using the Resonance Frequency (RF) from the Frequency Response Function (FRF) that derived from the Fourier Transform based on the Frequency Analysis of the Digital Signal Processing (DSP)(S. O. Oyadigi; 1985). The RF values are verified from the Coherence Function (CF). To estimate the error, the Root Mean Squared Error (RMSE) method could be used. RESULTS : The dynamic modulus data obtained from IRT have the maximum error of 8%, and RMSE of 2,000MPa compared to the dynamic modulus measured by the Dynamic Modulus Testing (DMT) of MTS testing machine. CONCLUSIONS : The IRT testing method needs the prediction model of the dynamic modulus for a Linear Visco-Elastic (LVE) specimen to improve the suitability.

The Study on High Performance of Offshore Concrete Using Crushed Stone Fines (쇄석미분말을 사용한 해양콘크리트의 고성능화에 관한 연구)

  • Chang, Chun-Ho;Jung, Yong-Wook
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.2
    • /
    • pp.135-142
    • /
    • 2009
  • This study investigates the characteristic properties of strength, flowability, durability and drying shrinkage to control strength and to reduce heat of hydration of high performance concrete using crushed stone fines. According to the experimental results, when crushed stone fines are increased every 10%, $10{\sim}15%$ of compressive strength is decreased and flowability of high performance concrete is effectively improved due to the decrease of modulus of deformation and confined water ratio. When crushed stone fines are replaced every 10%, $4^{\circ}C$ of the highest adiabatic temperature rise is decreased by reducing the unit cement. However, 5% of drying shrinkage is increased in the same condition In the meantime, durability of high performance concrete is excellent, having over 100% of good relative dynamic modulus of elasticity due to fineness of formation mused by the increase of the unit powder content and the improvement of flowability, without regard to the replacement of crushed stone fines. Therefore, It can be said that the usage of crushed stone fines can control the strength of high performance concrete by replacement and reduce heat of hydration.

  • PDF

Methods of Ensuring Safety for Integrated Fire Protection Shutters at Elementary and Middle Schools (초등학교 및 중학교의 일체형 셔터 안전성 확보 방안)

  • Youn, Hae-Kwon
    • Fire Science and Engineering
    • /
    • v.30 no.5
    • /
    • pp.36-45
    • /
    • 2016
  • Integral fire shutters are installed indiscriminately, regardless of evacuation. There is always the risk of an accident because integral shutters are applied mainly to corridors, passages, and stairs of schools This study evaluated the problem of integral shutter's entrance, evacuation, construction management, and maintenance control through a fire shutter accident case, including present condition of fire shutter installed at school of Okgil, Bucheon and Dongtan, Hwaseong. The results suggest that emergency lighting or signs for passage be set up to check location of entrance easily and install obstruction sensors at fire shutter to reduce life damage. In addition, the number of efficiency tests of fire shutters should be increased by running a trial test monthly or weekly to maintain the performance of fire shutter. Schools need to install a fire shutter- applied sprinkler at the entire floor.

Development of Mode Choice Model and Applications Considering Connectivity of Express Way (고속도로 연계성을 반영한 고속철도 수단선택모형 개발 및 적용)

  • Cho, Hang-Ung;Chung, Sung-Bong;Kim, Si-Gon;Oh, Jae-Hak
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.4
    • /
    • pp.383-389
    • /
    • 2011
  • Until now, in planning and constructing KTX and the Express Way, the connectivity and transfer between these facilities have not been considered. In this study the effect of mode choice behavior by connecting KTX and the Express Way is analyzed through estimating Multinomial Logit Model and Binary Logit Model. The SP and RP surveys to develop these models were carried out and the data were selected from the passengers using the KTX station, Express Bus Terminals and Rest Areas in the Express Way. To test the effect of connectivity and transfer in the field, the case study for Dongtan KTX station was carried out. According to the results, connecting the KTX station and the Express Way has the effect of increasing the demand by 30%. And this is caused by saving about 120 minutes of traveling time from Seoul to Pusan. This study shows that the connectivity and transfer can increase the efficiency of transportation system and the improvement in the mobility and accessibility will maximize the usages of these two facilities.

Investigation on Impact-echo Testing Method for Rock Specimens (암석 시편의 충격반향(공진주) 시험에 관한 고찰)

  • Cho, Jung-Woo;Lim, Bo-Sung;Cho, Ho-Bum;Jeon, Seok-Won;Ha, Hee-Sang
    • Tunnel and Underground Space
    • /
    • v.17 no.2 s.67
    • /
    • pp.83-89
    • /
    • 2007
  • Impact-echo test is a non-destructive testing method to determine dynamic properties of a material. This presentation introduces the experimental set-up and procedure of the test for rock specimens. In addition, the test results of domestic rocks collected in 5 different areas, a cement mortar and aluminium alloy are presented. The test results include resonance frequencies of P- and S-wave as well as damping ratios of the described 7 different materials. The differences between dynamic and static values of elastic moduli are about 10%, while the dynamic Poisson's ratios are greater than the static Poisson's ratios by at least 0.07. The damping ratio is dependent on the joint density and degree of weathering of a rock specimen.

Laboratory Performance Evaluation of High Modulus Asphalt Mixes for Long-Life Asphalt Pavements (장수명 아스팔트 포장용 고강성 혼합물의 실내 공용성 평가)

  • Kang, Min Gyun;Lee, Jung Hun;Lee, Hyun Jong;Choi, Ji Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1D
    • /
    • pp.73-79
    • /
    • 2006
  • A major purpose of this study is to develop high modulus asphalt mixtures for perpetual asphalt pavements which can save maintenance cost by increasing the design and performance periods of the pavements. Various physical and mechanical laboratory tests are performed for the high modulus asphalt binder developed in this study. The test results show that the properties of the high modulus binder are similar to those of the French high modulus binders. In addition to the binder tests, various performance tests are conducted for the high modulus and conventional mixtures. The dynamic modulus test results indicate that the dynamic modulus values of the high modulus mixtures are higher than those of the conventional mixtures by 10~15% at $5^{\circ}C$, 20~25% at $15^{\circ}C$ and 100% at $30^{\circ}C$. It is observed from the performance tests that the high modulus mixtures yield better fatigue, rutting and moisture damage performance than the conventional mixtures.

Long-Term Performance Evaluation on the Recycled Asphalt Concrete Using the Steel Slag and Reclaimed Asphalt Pavement Aggregates (제강 슬래그 및 순환골재를 사용한 순환 아스팔트 혼합물의 장기 공용성 평가)

  • Park, Kyung-Won;Jang, Dong-Bok;Lee, Jong-Min;Kang, Byung-Hwa;Kim, Hyung-Bae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.633-641
    • /
    • 2021
  • The study performed long-term performacne evaluation on the hot mix asphalt using the steel slag aggregates and Reclaimed Asphalt Pavement (RAP). The laboratory comparative evaluation was conducted between conventional Hot Mix Asphalt (HMA) which is entitled WC-2 and HMA containing steel slag and RAP which is entitled ES WC-2(R). Dynamic stability test, dynamic modulus test, and fatigue crack test were conducted during the comparative evaluation process. The dynamic stability test result showed that ES WC-2(R) was 140% higher than WC-2. It is noted that ES WC-2(R) showed no inflection point whereas WC-2 showed inflection point during the dynamic stability test which implies ES WC-2(R) has the higher moisture susceptability than WC-2. The dynamic modulus of ES WC-2(R) were 342.3%, 486.7%, and 350.0% higher than WC-2 at medium temperature of 21℃, low temperature of -10℃, and high temperature of 38℃ respectively. The test result showed that rutting resistance of ES WC-2(R) is higher than WC-2 at all temperature spectrum. The fatigue resistance of ES WC-2(R) were 31.7%, 325.3%, 899.9% higher at low stress level, medium stress level, and high stress level, respectively. The test result showed that ES WC-2(R) is higher than WC-2 at all stress levels. Based on the laboratory comparative evaluation, The in-situ scale Accelerated Pavement Test (APT) was conducted comparing WC-2 and WC-2(R). APT found that the rutting resistance of WC-2(R) was 45% higher than WC-2.

Stress-Strain Properties of Surlightweight Polymer Concrete (초경량(超輕量) 폴리머 콘크리트의 응력(應力)-변형특성(變形特性))

  • Sung, Chan Yong;Kim, Kyung Tae;Min, Jeong Ki;Kim, Young Ik;Youn, Joon No;Jung, Hyun Jung
    • Korean Journal of Agricultural Science
    • /
    • v.25 no.2
    • /
    • pp.271-277
    • /
    • 1998
  • This study was performed to evaluate the stress-strain properties of surlightweight polymer concrete using synthetic lightweight aggregates. The following conclusions were drawn; 1. The dynamic modulus of elasticity was in the range of $1.514{\times}10^5{\sim}1.916{\times}10^5kgf/cm^2$, which was approximately 48~96% of that of the normal cement concrete. It was showed larger with the decrease of synthetic lightweight fine aggregate. 2. The static modulus of elasticity was in the range of $2.552{\times}10^4{\sim}4.386{\times}10^4kgf/cm^2$, which was showed lower compared to that of the normal cement concrete. The poisson's number of surlightweight polymer concrete was less than that of the normal cement concrete. 3. The stress-strain curves of surlightweight polymer concrete were showed smaller with the increase of expanded clay.

  • PDF

Mechanical Properties and Resistance to Freezing and Thawing of the Recycled Aggregate Concrete with Metakaolin (메타카올린을 혼합한 재생골재 콘크리트의 역학적 특성 및 동결융해 저항성)

  • Moon, Han-Young;Kim, Yang-Bae;Moon, Dae-Joong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.4
    • /
    • pp.270-278
    • /
    • 2005
  • Recycled aggregate concrete has lower strength and durability compared to concrete with natural aggregate. Therefore, metakaolin is used to improve the properties of recycled aggregate concrete. Main components of metakaolin are $SiO_2$ and $Al_2O_3$. and specific surface area is 9 times larger than that of ordinary portland cement. Quality of demolished-recycled aggregate(DRA) satisfies the type 1 of KS F 2573, but quality of source-recycled aggregate(SRA) does not satisfy with the type 2 of KS F 2573. When metakaolin was replaced with 20% of cement, compressive strength of concrete with SRA and DRA develops about 40~64% of control concrete. Water absorption ratio was reduced about 2% by replacing 20% metakaolin and it represents low compared to the natural aggregate concrete without metakaolin. In addition, the resistance to freezing and thawing, of concrete with DRA is indicated to remarkably enhanced due to the contribution of metakaolin. However, when metakaolin is replaced with 20% of cement, relative dynamic modulus of elasticity of concrete with SRA was below 60% at 210 freezing and thawing cycles.