• Title/Summary/Keyword: 동축 분류

Search Result 24, Processing Time 0.02 seconds

Experimental Study on the Flow-field and the Atomization Characteristics of Gas-liquid phase Coaxial Jet (기액동축 분류의 유동장 및 미립화특성에 관한 연구)

  • 전흥신;김형택
    • Journal of Energy Engineering
    • /
    • v.4 no.3
    • /
    • pp.394-401
    • /
    • 1995
  • 본 연구는 중심부에 액체, 외주부에 산화제가 흐르는 기액 동축분류의 유동장에 대한 것이다. 기액 동축 분사기는 연료의 분사량이 적은 소형 연소시스템을 고려하여, 실험은 연공비(W1/Wa)가 0.6 이하를 대상으로, 물과 공기를 사용하여 분사조건에 따른 분무특성과 기액 2상 분무류의 기본구조를 조사하여 액적의 확산, 기액혼합특성에 대하여 검토하여 다음과 같은 결론을 얻었다. 반경방향 기상속도분포 및 액적유속분포는 분구직경 및 분사조건에 관계없이 정규분포에 가까운 형태를 취하고 있으며, 각각 식 (2) 및 (3)으로 나타낼 수 있다. 기상속도는 반치폭은 축방향에 따라 일정한 구배 (≒4.6)로서 증가하며, 기상만의 단상분류의 구배(≒6)에 비해서 완만하다. 액적유속 반치폭은 축방향에 따라 더욱 완만한 구배(≒3.1)로서 증가한다. 무차원 액적유속분포는 축방향에 따라 일정한 구배(n≒1.5)로서 감소한다. 액적의 확산은 상대적으로 기액유량비가 클수록 효과적으라고는 말할 수 없고, 최대 확산을 이루는 최적의 기액유량비가 존재한다.

  • PDF

동축이중공기분류중의 난류확산화염에 관한 실험적 연구(I)

  • 조용대;최병륜
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.4
    • /
    • pp.912-919
    • /
    • 1990
  • 본 연구에서는 다중선회연소기의 원리에 기초하여 속도차가 있는 두 공기류의 전단층에 기체연료를 분출하여 연소시키면 연료가 두 공기류 사이에 유입되므로 연료 가 산화제의 접촉면적이 증대되고 또한 난류혼합속도가 큰 영역으로 연료가 유입되므 로 혼합효과가 증대되어 고부하연소에 적절한 방식이 될 것으로 생각하여 동축이중공 기분류중의 난류 확산화염에 대해 그 화염구조를 밝히고 이 화염을 실용연소기에 응용 하기 위한 기초자료를 얻는데 목적이 있다.

An Experimental Study on the Behavior of Injection Gas (분사가스의 확산거동에 관한 실험적 연구 성방정식의 형성(II))

  • 박경석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.6
    • /
    • pp.1215-1222
    • /
    • 1989
  • 본 논문의 목적은 공기 유동장내에 가스분류의 거동을 조사하고 실용 가스 기관의 설계시에 필요한 기초적 데이타를 제공하고자 하는데 있다.본 연구와 관련 된 후래의 연구를 보면 자문등은 열선농도프로브를 사용하여 정상분류중의 농도측정을 행하였고, 분류내의 내부구조를 상세히 조사하였다. 특히, 종래에는 일정하게 보였 던 분류코아 부의 농도변동값의 경향을 구체적으로 나타내었다.

A Study on Self-Similarity in Turbulent Hydrogen Jet Flames with Coaxial Air (동축공기 수소확산 화염의 자기상사성에 대한 연구)

  • Kim, Mun-Ki;Kim, Seung-Han;Yoon, Young-Bin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.71-78
    • /
    • 2002
  • Experiments have been performed using two-color PIV in hydrogen non-premixed flames with various conditions of coaxial air, which was classified into three cases with/without reaction. Mean velocity, turbulence intensity and Reynolds stress were analyzed using flow fields from PIV measurement First, the similarity of pure jet had a good agreement with previous results of other researchers. It was found that the decay of centerline velocity was proportional to $x^{-1}$ in coaxial air conditions. By normalizing axial distance with effective jet diameter defined by effective density, the data of centerline velocity collapsed a single line. And the radial profiles of mean velocity showed that they didn't become self-similar because the curves differed from each other as coaxial air velocity increased at fixed fuel velocity. Also, turbulence intensity became self-similar further downstream than mean velocity.

Experimental Study on Recess Characteristic of Swirl Coaxial Injector (스월 동축형 인젝터의 리세스 특성에 대한 실험적 연구)

  • Choi, Ho-Yeon;Kim, Sung-Hyuk;Yoon, Jung-Soo;Yoon, Yung-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.217-220
    • /
    • 2009
  • This paper presents experimental results of Recess Characteristic of Swirl Coaxial Injector of fuel-rich gas generators. It was revealed that the internal impinging phenomenon played an important role in the spray characteristics, such as spray angle and breakup length.

  • PDF

An Experimental Study on the Similarity of Confined Coaxial Jets (동축 이중제한분류의 상사성에 대한 실험적 연구)

  • 사용철;이태환;이준식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.5
    • /
    • pp.1291-1299
    • /
    • 1995
  • In confined coaxial jets, the flow-mixing characteristics depend on the initial conditions at the nozzle outlet such as velocity ratio and nozzle radius ratio. In this study, nozzle ratio(inner/outer) was 0.3. Longitudinal axial velocity, turbulent intensity and Reynolds shear stress were measured by CTA. Measurements were made from the duct inlet to the region where similarity solution could exist. This study investigated flow charicteristics according to the variation of similitude parameter which was derived from the theory of Craya-Cutet. The range of similarity region depends on the variation of the similitude patameter. The form factor obtained from the axial velocity profile in the similarity region was constant. The higher the similitude parameter, the wider the spread rate of the jets. Due to this fact, the similarity conditions developed more quickly and the region where the similarity holds became narrow. Present experimental data confirmed the validity of Craya-Curtet theory.

An Experimental Study on Flame Stability and Combustion Characteristics of Coaxial Diffusion Flame (동축분류 확산화염에서 화염안정화와 연소특성에 관한 연구)

  • 유현석;오신규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.509-518
    • /
    • 1995
  • A study for the flame stability and the combustion characteristics of coaxial diffusion flame was conducted. The fuel employed was natural gas. The experimental variables were rim thickness of fuel tube, blockage ratio of the outer diameter of fuel tube to the inner diameter of air tube, and momentum ratio of fuel to air. It was consequently found that the stability in the neighborhood of the fuel rim depended on the rim thickness, especially in the case of above 3 mm, and that the stable region of the flame extended remarkably due to the formation of recirculation zone above rim. The effect of the blockage ratio on the flame stability was found to be minor in the case of above 3 mm of rim thickness. Between the momentum ratio 2 and 3, the stable flame zone was widely established as well good combustion. With increasing the fuel-air momentum ratio, axial velocity, turbulence intensity, and Reynolds stress increased.

Basic Study on Lift-off Characteristics of Non-Premixed Flames of Methane-Air Jet in a Tube (관 내부 메탄-공기 분류 비예혼합 화염의 부상 특성 기초 연구)

  • Kim, Go-Tae;Kim, Nam-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.4
    • /
    • pp.431-438
    • /
    • 2011
  • Flame lift-off conditions determine the operating conditions of burners. It is known that a flame can be lifted when the Schmidt number (Sc), which is the ratio of the dynamic viscosity to the mass diffusivity, is greater than unity. In this study, the flame lift-off characteristics of non-premixed flames of propane (Sc > 1) and methane (Sc < 1) in a coaxial outer air tube were experimentally compared. The experimental results indicated that stable lifted flames could be obtained even when Sc < 1 in a confined air tube. On the basis of the results of a simple numerical analysis, it was confirmed that a new flame stabilization mechanism exists in the tube. A velocity field is preferentially developed upstream of the flame, and it results in a new stabilization condition. This result can be very useful in explaining the stabilization of the flames of ordinary burners in which a flame is produced in a confined space.

Stability of premixed double concentric jets flame with a recirculation zone (재순환역을 수반하는 동축분류예혼합화염에 관한 연구)

  • 이등헌일;송규근
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.145-153
    • /
    • 1987
  • Stability limits of a double concentric jets flame and the structure of recirculation zone formed behind a thick burner rim were investigated. To control the flame stability, swirled secondary air flow ranging 0.13-0.71 of swirl number, and air, fuel, and mixture gas injection from an injection coaxial slit set on burner rim were examined. Flame stability limits, flame shapes, lengths of recirculation zone, temperature distributions, residence times, air ratios in the recirculation zone were measured. The following results were obtained. (1) Lean limits were considerably widened by a strong swirl because the recirculation zone was enlarged. (2) At fuel injection as well as mixture injection, lean limits were also extended. But, air injection had no effect on stability limits. (3) Injected gas seems to diffuse into the recirculation zone through its outer boundary surrounded the secondary air. Therefore, chemical structure in the recirculation zone with air injection coincides with that without injection. (4) Injection position had no effect on flame stability limits.

A Study on the Flow Characteristics in Double Coaxial Pipe Jets (동축이중원관 분류에 있어서의 유동 특성에 관한 연구)

  • Shin, C.H.;Kim, K.H.
    • Journal of ILASS-Korea
    • /
    • v.1 no.4
    • /
    • pp.46-53
    • /
    • 1996
  • The present study is aiming at improving the performance of main nozzle of an air jet loom with a modified reed and auxiliary nozzles. The double coaxial pipe jets consisting of a central air jet and an annular air jet have been experimentally investigated. The duter jet has a potential core and a constant velocity. The inner jet through an inner long pipe is induced by the subatmospheric pressure near the inner nozzle edge, and the jet velocity of an inner pipe is always lower than that of a outer pipe. The static pressures of the main nozzle over a wide range of the nozzle tank pressure were measured, and the nozzle velocity and Mach numbers were analytically calculated. Experiment81 results indicate that the critical condition of Mach number of unity to occur at the two positions in a main nozzle; one of them is the needle tip and the other is the acceleration tube exit An increase in the tank pressure causes the critical throat condition to occur at the two positions above. The velocity of acceleration-tube exit is maximum at the critical length L* and flow patter in acceleration-tube over critical lengh remains unstable.

  • PDF