본 연구에서는 국내 산업분류 체계에서 기업들이 성격이 유사한 그룹으로 분류되고 있는지를 분석하여 국내 기업의 산업분류의 적정성에 대해 논의하고자 한다. 산업분류는 제조업과 전문, 과학 및 기술서비스업으로 한정하여 두 산업에 속한 기업들에 대해서 동질성 테스트를 수행하였다. 기업의 회계정보를 이용하여 동질성 테스트를 수행해야 하는데, 기업별 회계정보로서 산업분류의 역할이 중요한 발생액 모형의 구성 요소인 총발생액, 매출과 매출채권 증분의 차이, 그리고 유형자산을 선택하였다. 분석 결과, 제조업에 속한 기업들의 동질성이 전문, 과학 및 기술서비스업에 속한 기업들보다 상대적으로 더 높다는 것을 확인할 수 있었다. 본 연구의 결과는, 산업분류가 기업 수준의 분석뿐만 아니라 기업이 속한 산업 수준의 분석을 가능하게 함으로써 기업에 대한 이해도를 높이는데 매우 유용한 체계이지만, 산업 내 기업의 동질성을 전제로 한다는 한계점이 있으므로 연구 목적에 맞게 산업분류 영향을 고려해야 한다는 점을 시사한다.
대규모 수험자를 대상으로 하는 경우, CBT 방식은 PBT 방식에 비해 비용이나 처리 방법에 있어 효율적이라는 장점을 갖고 있다. 하지만, CBT 평가가 제대로 운영되려면 많은 문항으로 구성된 대규모의 문제 은행이 있어야 하며, 기 구축된 문항은 적합성과 공정성이 반드시 보장되어야 한다. 이에 본 연구는 4,000여 명 이상의 수험자를 대상으로 8000문제가 넘는 문제 은행이 구축되어 실제 CBT 시스템을 개발·운영하고 있는 P 대학교 CBLT 테스트 시스템의 문항들을 분석할 방법을 제안한다. 연구 결과 CBLT 테스트 시스템의 문제 은행의 개별 문항들이 출제자 1인의 주관적 판단에 달려있어 문항에 대한 질 관리가 어렵다는 문제점을 해결하기 위해서는 고전검사이론이 적합하다고 판단된다. 그러나 매 시험이 동질한 문항 세트로 구성되기 위해서는 문항에 대한 충분하고 객관적인 자료가 절대적으로 필요하다. 이를 위해서는 CBLT 테스트 시스템과 같이 응답자 수가 2∼300여 명 전후이며, 40문항의 문항 세트에 대한 분석은 2모수 정도가 적당하다고 판단된다.
본 논문에서는 효과적으로 블록 크기를 변화시키는 움직임 예측에 대하여 제시하고 있다 블록안의 움직임의 정도에 따라 블록 크기를 채택하는 방식으로, 임의의 프레임에서의 블록의 수는 정확한 움직임을 나타내기 위해 변화된다. 이것은 움직임과 보충적인 데이터사이의 비트할당이 가변적이 되고, 프레임에 기초한 전체적인 비트율 역시 변화하게 된다. 특히, 본 논문은 동적 블록 크기 방법의 대표적인 쿼드 트리(quad fee) 방법의 단점을 보완하는 방향에서 연구되었으며, 성능 향상을 위한 새로운 방법도 아울러 덧붙여져 있다. 즉, 보통 사용하는 쿼드 트리 방식의 분할 대신에 각각의 쿼드 부분의 프레임 차를 이용하여 가장 큰 블록의 동질성 테스트를 실시하여 분할한다. 또한, 분할과 재결합 방식을 함께 적용하여 불필요한 블록의 개수가 많아지는 것을 방지하여, 큰 계산량 감소와 높은 이미지 질을 달성하도록 하였다. 자연히, 계산량은 기존 방법보다 약 20-70% 정도 감소했으며, 이미지 질도 크게 향상되는 결과를 가져오게 되었다
소프트웨어 제품의 정확한 인도시기를 예측하거나 효용성 및 신뢰성을 예측하기 위해서는 소프트웨어 테스팅 과정에서 중요한 요소인 테스트 커버리지를 이용하면 보다 효율적인 테스팅 작업을 할 수 있다. 이런 모형을 ENHPP모형이라고 한다. 본 논문에서는 기존의 소프트웨어 신뢰성 모형인 지수 커버리지 모형과 S-커버리지 모형을 재조명하고 이 분야에 적용될 수 있는 Burr 분포에 기초한 Burr 커버리지 모형을 제안하였다. 고장 간격 시간으로 구성된 자료를 이용한 모수추정 방법은 최우추정법 과 일반적인 수치해석 방법인 이분법을 사용하여 모수 추정을 실시하고 효율적인 모형 선택은 편차자승합(SSE) 및 콜모고로프 거리를 적용하여 모형들에 대한 효율적인 모형선택도 시도하였다. NTDS 자료를 사용한 임무시간 비교 분석한 결과 Burr 커버리지 모형 시행이 지수나 S-형 모형보다 우수함을 보이고 있다. 이 자료들에서 기존의 모형과 Burr 커버리지 모형의 비교를 위하여 산술적 및 라플라스 검정, 편의 검정등을 이용하였다.
본 연구의 목적은 연 증발접시 증발량의 수문학적 분해를 위하여 신경망모형을 적용하는데 있다. 신경망 모형은 각각 다층 퍼셉트론 신경망모형(MLP-NNM)과 지지벡터기구 신경망모형(SVM-NNM)으로 구성되어 있다. 그리고 신경망모형의 수행평가를 위하여 훈련 및 테스트과정으로 구성되었다. 신경망모형의 훈련과정을 위하여 실측, 모의 및 혼합자료와 같은 세 가지 형태의 자료가 사용되었으며, 테스트과정을 위해서는 실측자료만 이용되었다. 평가를 위하여 4가지의 통계학적 지표(CC, RMSE, E, AARE)가 각각 제시되었으며, ANOVA 및 Mann-Whitney U 검증을 이용하여 실측 및 계산된 월 증발접시 증발량자료에 동질성검증을 실시하였다. 본 연구를 통하여 비선형 시계열자료의 수문학적 분해를 위해서 MLP-NNM과 SVM-NNM의 적용성을 평가하였다. 게다가 연 증발접시 증발량 자료의 수문학적 분해로부터 신뢰성있는 월 증발접시 증발량자료를 구축할 수 있을 것이며, 관개배수 네트워크 시스템의 평가를 위한 이용가능한 자료를 제공할 수 있을 것이다.
유한고장수를 가진 비동질적인 포아송 과정에 기초한 모형들에서 잔존 오류 1개당 고장 발생률은 일반적으로 상수, 혹은 단조증가 및 단조 감소 추세를 가지고 있다. 소프트웨어 제품의 정확한 인도시기를 예측하거나 효용성 및 신뢰성을 예측하기 위해서는 소프트웨어 테스팅 과정에서 중요한 요소인 테스트 커버리지를 이용하면 보다 효율적인 테스팅 작업을 할 수 있다. 본 논문에서는 기존의 소프트웨어 신뢰성 모형인 지수 커버리지 모형과 S-커버리지 모형을 적용하고 이 분야에 적용 될 수 있는 변형 커버리지 모형(중첩모형 및 혼합모형) 비교 문제를 제안하였다. 고장 간격시간으로 구성된 자료를 이용한 모수추정 방법은 최우추정법과 수치해석 방법인 이분법을 사용하여 모수 추정을 실시하고 효율적인 모형 선택은 편차자승합(SSE)을 이용하였다.
유한고장수를 가진 비동질적인 포아송 과정에 기초한 모형들에서 잔존 오류 1개당 고장 발생률은 일반적으로 상수, 혹은 단조증가 및 단조 감소 추세를 가지고 있다. 소프트웨어 제품의 정확한 인도시기를 예측하거나 효용성 및 신뢰성을 예측하기 위해서는 소프트웨어 테스팅 과정에서 중요한 요소인 테스트 커버리지를 이용하면 보다 효율적인 테스팅 작업을 할 수 있다. 본 논문에서는 기존의 소프트웨어 신뢰성 모형인 지수 커버리지 모형과 S-커버리지 모형을 재조명하고 이 분야에 적용될수 있는 중첩모형을 제안하였다. 고장 간격시간으로 구성된 자료를 이용한 모수추정 방법은 최우추정법과 일반적인 수치해석 방법인 이분법을 사용하여 모수 추정을 실시하고 효율적인 모형 선택은 편차자승합(SSE)을 이용하였다.
본 연구는 소프트웨어 신뢰성을 측정하기 위해 소프트웨어 신뢰도 측정 모형에 따라 소프트웨어 신뢰도를 측정하는 방법을 제시하려 한다. 본 연구에서 제시한 모형의 형태는 비동질적 포아송 과장의 분포를 이용하였으며, 제시된 모형의 소프트웨어 신뢰도를 측정하는 방안을 제시하였다. 제시된 모형에 따라서 적합한 소프트웨어 신뢰도 성장 모형을 선택하는 방법으로는 소프트웨어 고장 데이터에 따라서 신뢰도 함수의 추정 값에 따른 평균제곱오차를 계산하여 적합한 소프트웨어 신뢰도 함수를 제안하는 방법을 연구하였다. 본 연구에서는 소프트웨어 품질을 측정하기 위한 신뢰도 함수를 제안하기 위하여 모델을 제시하고 고장데이터를 적용하여 추정 값의 오차를 최소화하는 관점에서 소프트웨어 신뢰도 함수를 선택할 수 있는 방안을 제시한 연구로 판단된다.
소프트웨어의 디버깅에 오류 발생의 시간을 기반으로 하는 많은 소프트웨어 신뢰성 모델이 제안되어 왔다. 무한고장 모형과 비동질적인 포아송 과정에 의존한 소프트웨어 신뢰성 모형을 이용하면 모수 추정이 가능하다. 소프트웨어를 시장에 인도하는 결정을 내리기 위해서는 조건부 고장률이 중요한 변수가 된다. 유한 고장 모형은 실제 상황에서 다양한 분야에 사용된다. 특성화 문제, 특이점의 감지, 선형 추정, 시스템의 안정성 연구, 수명을 테스트, 생존 분석, 데이터 압축 및 기타 여러 분야에서의 사용이 점점 많아지고 있다. 통계적 공정 관리 (SPC)는 소프트웨어 고장의 예측을 모니터링 함으로써 소프트웨어 신뢰성의 향상에 크게 기여 할 수 있다. 컨트롤 차트는 널리 소프트웨어 산업의 소프트웨어 공정 관리에 사용되는 도구이다. 본 논문에서 NHPP에 근원을 둔 로그 포아송 실행시간 모형, 로그선형 모형 그리고 파레토 모형의 평균값 함수를 이용한 통계적 공정관리 차트를 이용한 제어 메커니즘을 제안하였다.
과학기술이 급속하게 발전함에 따라 더 강력한 소프트웨어 기능의 급속한 발전과 함께 소프트웨어의 복잡성이 크게 증가함으로써 소프트웨어 테스트 및 신뢰성 평가의 어려움이 증가하고 있다. 소프트웨어 고장분석을 위한 비동질적인 포아송 과정에서 결함당 고장발생률이 상수이거나, 단조 증가 또는, 단조 감소하는 패턴을 가질 수 있다. 본 논문에서는 결함의 기대값을 가정하는 유한고장 소프트웨어 NHPP 모형과 수리시점에서도 고장이 발생할 상황을 반영하는 무한고장 NHPP 모형들을 상호 비교 제시하였다. 소프트웨어 신뢰성 분야에서 많이 사용되는 어랑분포에 근거한 유한고장과 무한고장 소프트웨어 신뢰성 모형에 대한 신뢰도 성능을 비교 분석하였다. 그 결과 유한고장 모형이 무한고장 모형보다 효율적으로 좋게 나타났으며, 이 과정에서 모수추정법은 최우추정법을 이용하였다. 본 연구결과를 통하여 소프트웨어 개발자들에게 소프트웨어 고장현상을 파악하는데 도움을 줄 수 있을 것으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.