• Title/Summary/Keyword: 동적 힘 해석

Search Result 63, Processing Time 0.029 seconds

Study on the Influence of Applied Forces Acting on Small Scale Cantilever Beams (미소 외팔보의 동적해석 시 작용하는 힘들의 영향도에 관한 연구)

  • Kim, Kwan-Yong;Yoo, Hong-hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.702-707
    • /
    • 2005
  • The equations of motion of the structure, which is a small scale cantilever beam considering electrostatic force, squeeze film damping and van der Waals force are obtained employing Galerkin's method based on Euler beam theory. The influence of each force is investigated fur changing the size of a small scale cantilever beam which assumed uniform shape. Also the forces which are affected by the required size of a small scale cantilever beam for manufacturing are forecasted.

  • PDF

Geometric and Material Nonlinear Analysis of Single Layer Dome using ABAQUS (유한요소 해석을 이용한 단층 래티스 돔의 비선형비탄성 해석)

  • Kim, Yeon-Tae;Jeong, Mi-Roo;Lee, Jae-Hong
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.119-124
    • /
    • 2008
  • Space structure is a appropriate shape that resists external force only with in-plane force by reducing the influence of bending moment, and it maximizes the effectiveness of structure system. The space structure should be analized by nonlinear analysis regardless static and dynamic analysis because it accompanies large deflection for member. To analyze the structure of the space structure exactly generally geometrically nonlinear and material nonlinear, complex nonlinear analysis are considered. To settle the weakness that geometric nonlinear problem does not consider nonlinear as per trait and position of the structure material and that the nonlinear matter of structure material also does not consider nonlinear as per geometric form. Therefore, In this paper, analysis is considered geometric nonlinear and material nonlinear simultaneous conditioning, and traced load-deflection curve by using ABAQUS which is the general purpose of the finite element program.

  • PDF

Inelastic Nonlinear Analysis of Plane Truss Structures Using Arc-Length Method (호장법을 이용한 평면 트러스 구조의 비탄성 비선형 해석)

  • Kim, Kwang-Joong;Baek, Ki-Youl;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.1
    • /
    • pp.41-48
    • /
    • 2008
  • Spatial structure is an appropriate shape that resists external force only with in-plane forte by reducing the influence of bending moment, and it maximizes the effectiveness of structure system. the spatial structure should be analyzed by nonlinear analysis regardless static and dynamic analysis because it accompanys large deflection for member. To analyze the spatial structure geometrical and material nonlinearity should be considered in the analysis. In this paper, a geometrically nonlinear finite element model for plane truss structures is developed, and material nonlinearity is also included in the analysis. Arc-length method is used to solve the nonlinear finite element model. It is found that the present analysis predicts accurate nonlinear behavior of plane truss.

  • PDF

Running Safety Analysis of Railway Vehicle Systems for Ground Vibration (철도 차량의 지반진동에 의한 주행안전성 평가)

  • Choi, Jun-Sung;Jo, Man-Sup;Lee, Jin-Moo
    • Tunnel and Underground Space
    • /
    • v.16 no.4 s.63
    • /
    • pp.288-295
    • /
    • 2006
  • In this study, dynamic behavior of the vehicles is analyzed, while the track is subjected to lateral vibrations due to earthquake and blasting load. A computer program(WERIA, Wheel Rail Interaction Analysis) is used, which can simulate dynamic responses of vehicles subjected to lateral vibrations. The analysis considers two types of vehicles: I.e. power cars of KTX and Busan subway train. It can also consider the interaction with sub-structures such as tracks and soil. The creep force module is considered, and the running safety of railway vehicles subjected to earthquake and blasting loading is studied. Based on the results of this study, the running safety of the vehicles can be confirmed against lateral vibration.

An analytical solution for soil-lining interaction in a deep and circular tunnel (원형터널에서 지반-라이닝 상호작용에 대한 수학적 해석해에 관한 연구)

  • Lee, Seong-Won;Jeong, Jea-Hyeung;Kim, Chang-Yong;Bae, Gyu-Jin;Lee, Joo-Gong;Park, Kyung-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.4
    • /
    • pp.427-435
    • /
    • 2009
  • This study deals with the analytical solution for soil-lining interaction in a deep and circular tunnel. Simple closed-form analytical solutions for thrust and moment in the circular tunnel lining due to static and seismic loadings are developed by considering the relations between displacement and interaction forces at the soil-lining interface. The interaction effect at the soil-lining interface is considered with new ratios (the normal and shear stiffness ratios). The effects of the ratios on the normalized thrust and the normalized moment are investigated.

Study on the Applicability of a New Multi-body Dynamics Program Through the Application to the Heave Compensation System (상하동요 감쇠장치 적용을 통한 새로운 다물체동역학 프로그램의 적용성 검토)

  • Ku, Nam-Kug;Ha, Sol;Roh, Myung-Il
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.4
    • /
    • pp.247-254
    • /
    • 2013
  • In this paper, dynamic response analysis of a heave compensation system is performed for offshore drilling operations based on multibody dynamics. With this simulation, the efficiency of the heave compensation system can be virtually confirmed before it is applied to drilling operations. The heave compensation system installed on a semi-submersible platform consists of a passive and an active heave compensator. The passive and active heave compensator are composed of several bodies that are connected to each other with various types of joints. Therefore, to carry out the dynamic response analysis, the dynamics kernel was developed based on mutibody dynamics. To construct the equations of motion of the multibody system and to determine the unknown accelerations and constraint forces, the recursive Newton-Euler formulation was adapted. Functions of the developed dynamics kernel were verified by comparing them with other commercial dynamics kernels. The hydrostatic force with nonlinear effects, the linearized hydrodynamic force, and the pneumatic and hydraulic control forces were considered as the external forces that act on the platform of the semi-submersible rig and the heave compensation system. The dynamic simulation of the heave compensation system of the semi-submersible rig, which is available for drilling operations with a 3,600m water depth, was carried out. From the results of the simulation, the efficiency of the heave compensation system were evaluated before they were applied to the offshore drilling operations. Moreover, the calculated constraint forces could serve as reference data for the design of the mechanical system.

Wind Loads of 5 MW Horizontal-Axis Wind Turbine Rotor in Parked Condition (운전정지 조건에서 5 MW 수평축 풍력터빈 로터의 풍하중 해석)

  • Ryu, Ki-Wahn;Seo, Yun-Ho
    • Journal of the wind engineering institute of Korea
    • /
    • v.22 no.4
    • /
    • pp.163-169
    • /
    • 2018
  • In this study, wind loads exerted on the offshore wind turbine rotor in parked condition were predicted with variations of wind speeds, yaw angles, azimuth angle, pitch angles, and power of the atmospheric boundary layer profile. The calculated wind loads using blade element theorem were compared with those of estimated aerodynamic loads for the simplified blade shape. Wind loads for an NREL's 5 MW scaled offshore wind turbine rotor were also compared with those of NREL's FAST results for more verification. All of the 6-component wind loads including forces and moments along the three axis were represented on a non-rotating coordinate system fixed at the apex of rotor hub. The calculated wind loads are applicable for the dynamic analysis of the wind turbine system, or obtaining the over-turning moment at the foundation of support structure for wind turbine system.

Design and Analysis of Square Beam Type Piezo-electric Vibrating Gyroscope (압전세락믹을 이용한 사각보형 진동자이로의 설계, 제작 및 평가)

  • 이정훈;박규연;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.282-286
    • /
    • 1995
  • 일반적으로 관성계 내의 물체에 대한 동적특성의 파악을 위해서는 속도, 가속도 및 각속도, 각가속도에 대한 정보를 필요로 하며 자이로는 이중에서 각속도를 측정하는 장치이다. 운동하는 질량에 회전각속도가 인가될 때 발생되는 코리올리힘을 측정하여 회전각속도를 검출하는 개념의 각속도 센서인 진동자이로는 성능이 회전형 자이로에 비해 떨어지나 구조가 간단하고 소형이며 대량생산이 가능한 장점이 있다. 진동자이로의 효시로는 1950년 영국의 Sperry Gyroscope Company의 "Gyroton"이며, 전자기력을 이용한 가진과 측정이 그 특징으로서 실험실 조건에서 지구의 자전속도를 측정할 수 있었다. 그후 1960년대에 General Electric에서 "VYRO"라는 모델을 개발했는데 압전소자를 이용하여 가진과 측정을 하는 방법이 사용되었다. 1980년대에 Watson Ind., Soderkvist등은 센서자체가 압전물질로 만들어진 자이로를 실험하였고 1990년도에 들어서는 진동자이로의 원리를 마이크로 머시닝 기술과 연계시켜서 소형 경량화와 대량생산을 목표로 연구가 일부 진행되고 있다. 현재 제품화되어 실제 응용되고 있는 예로는 무라다사의 삼각프리즘 형태의 자이로, 토킨사의 원통형 자이로 등이 있으며 이러한 자이로는 캠코더 화면의 안정화 장치에 주로 사용되고 있다. 본 논문에서는 압전소자의 압전, 전왜 방정식으로 출발하여 자이로헤드의 동적 거동을 해석하였다. 진동자이로는 물체의 공진주파수에서의 진동현상을 이용하며, 두 방향의 고유진동수를 일치시켜야 하는 등의 설계조건이 있다. 이러한 조건을 만족하도록 사각보 구조를 기본으로 하여 새로운 형태의 자이로헤드를 고안하였다. 자이로헤드의 구동회로를 설계, 해석하고 각속도를 측정할 수 있는 검출회로를 설계하여 설계된 진동자이로의 동적 특성을 확인하고 보정회로를 이용하여 사용 주파수 영역을 넓혔다.이용하여 사용 주파수 영역을 넓혔다.러한 강이성들이 보장되는 제어이론들 중 H$_{\infty}$ 제어이론이 많이 연구/응용 되고 있다. 특히 공칭 플랜트 모델과 함께 사용되는 플랜트 모델과 함께 사용되는 플랜트 불확실성 모델은 직접적으로 성능 및 안정도에 영향을 미치므로 주의 깊게 선정해야 한다. 방법의 실질적인 적용에는 어려움이 있다. 본 연구에서는 기존의 방법들의 단점을 극복할 수 있는 새로운 회귀적 모우드 변수 규명 방법을 개발하였다. 이는 Fassois와 Lee가 ARMAX모델의 계수를 효율적으로 추정하기 위하여 개발한 뱉치방법인 Suboptimum Maximum Likelihood 방법[5]를 기초로 하여 개발하였다. 개발된 방법의 장점은 응답 신호에 유색잡음이 존재하여도 모우드 변수들을 항상 정확하게 구할 수 있으며, 또한 알고리즘의 안정성이 보장된 것이다.. 여기서는 실험실 수준의 평 판모델을 제작하고 실제 현장에서 이루어질 수 있는 진동제어 구조물에 대 한 동적실험 및 FRS를 수행하는 과정과 동일하게 따름으로써 실제 발생할 수 있는 오차나 error를 실험실내의 차원에서 파악하여 진동원을 있는 구조 물에 대한 진동제어기술을 보유하고자 한다. 이용한 해마의 부피측정은 해마경화증 환자의 진단에 있어 육안적인 MR 진단이 어려운 제한된 경우에만 실제적 도움을 줄 수 있는 보조적인 방법으로 생각된다.ofile whereas relaxivity at high field is not affected by τS. On the other hand, the change in τV does not affect low field profile but strongly in fluences on both inflection fie이 and the maximum relaxivity value. The results shows a fluences on both inflection field and the

  • PDF

Improved Static Element Stiffness Matrix of Thin-Walled Beam-Column Elements (박벽보-기둥 요소의 개선된 정적 요소강성행렬)

  • Yun, Hee Taek;Kim, Nam Il;Kim, Moon Young;Gil, Heung Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.4
    • /
    • pp.509-518
    • /
    • 2002
  • In order to perform the spatial buckling and static analysis of the nonsymmetric thin-walled beam-column element, improved exact static stiffness matrices were evaluated using equilibrium equation and force-deformation relationships. This numerical technique was obtained using a generalized linear eigenvalue problem, by introducing 14 displacement parameters and system of linear algebraic equations with complex matrices. Unlike the evaluation of dynamic stiffness matrices, some zero eigenvalues were included. Thus, displacement parameters related to these zero eigenvalues were assumed as polynomials, with their exact distributions determined using the identity condition. The exact displacement functions corresponding to three loadingcases for initial stress-resultants were then derived, by consistently combining zero and nonzero eigenvalues and corresponding eigenvectors. Finally, exact static stiffness matrices were determined by applying member force-displacement relationships to these displacement functions. The buckling loads and displacement of thin-walled beam were evaluated and compared with analytic solutions and results using ABAQUS' shell element or straight beam element.

Free Vibration Analysis of Non-symmetric Thin-Walled Curved Beams with Shear Deformation (전단변형을 고려한 비대칭 박벽 곡선보의 자유진동해석)

  • Kim, Nam-Il;Kim, Moon-Young;Cheol, Min-Byoung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.1-13
    • /
    • 2003
  • For spatial free vibration of non-symmetric thin-walled curved beams with shear deformation, an improved formulation is proposed in the present study. The elastic strain and the kinetic energies are first derived by considering constant curvature and shear deformation effects due to shear forces and restrained warping torsion. Next equilibrium equations and force-deformation relations are obtained using a stationary condition of total potential energy. And the finite element procedures are developed by using isoparametric curved beam element with arbitray thin-walled sections. Particularly not only shear deformation and thickness-curvature effects on vibration behaviors of curved beams but also mode transition and crossover phenomena with change in curvatures of beams are parametrically investigated. In order to illustrate the accuracy and the reliability of this study, various numerical solutions for spatial free vibration are compared with results by available references and ABAQUS's shell element.