• Title/Summary/Keyword: 동적 탐지

Search Result 298, Processing Time 0.036 seconds

News Video Shot Boundary Detection using Singular Value Decomposition and Incremental Clustering (특이값 분해와 점증적 클러스터링을 이용한 뉴스 비디오 샷 경계 탐지)

  • Lee, Han-Sung;Im, Young-Hee;Park, Dai-Hee;Lee, Seong-Whan
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.2
    • /
    • pp.169-177
    • /
    • 2009
  • In this paper, we propose a new shot boundary detection method which is optimized for news video story parsing. This new news shot boundary detection method was designed to satisfy all the following requirements: 1) minimizing the incorrect data in data set for anchor shot detection by improving the recall ratio 2) detecting abrupt cuts and gradual transitions with one single algorithm so as to divide news video into shots with one scan of data set; 3) classifying shots into static or dynamic, therefore, reducing the search space for the subsequent stage of anchor shot detection. The proposed method, based on singular value decomposition with incremental clustering and mercer kernel, has additional desirable features. Applying singular value decomposition, the noise or trivial variations in the video sequence are removed. Therefore, the separability is improved. Mercer kernel improves the possibility of detection of shots which is not separable in input space by mapping data to high dimensional feature space. The experimental results illustrated the superiority of the proposed method with respect to recall criteria and search space reduction for anchor shot detection.

Energy Efficient Distributed Intrusion Detection Architecture using mHEED on Sensor Networks (센서 네트워크에서 mHEED를 이용한 에너지 효율적인 분산 침입탐지 구조)

  • Kim, Mi-Hui;Kim, Ji-Sun;Chae, Ki-Joon
    • The KIPS Transactions:PartC
    • /
    • v.16C no.2
    • /
    • pp.151-164
    • /
    • 2009
  • The importance of sensor networks as a base of ubiquitous computing realization is being highlighted, and espicially the security is recognized as an important research isuue, because of their characteristics.Several efforts are underway to provide security services in sensor networks, but most of them are preventive approaches based on cryptography. However, sensor nodes are extremely vulnerable to capture or key compromise. To ensure the security of the network, it is critical to develop security Intrusion Detection System (IDS) that can survive malicious attacks from "insiders" who have access to keying materials or the full control of some nodes, taking their charateristics into consideration. In this perper, we design a distributed and adaptive IDS architecture on sensor networks, respecting both of energy efficiency and IDS efficiency. Utilizing a modified HEED algorithm, a clustering algorithm, distributed IDS nodes (dIDS) are selected according to node's residual energy and degree. Then the monitoring results of dIDSswith detection codes are transferred to dIDSs in next round, in order to perform consecutive and integrated IDS process and urgent report are sent through high priority messages. With the simulation we show that the superiorities of our architecture in the the efficiency, overhead, and detection capability view, in comparison with a recent existent research, adaptive IDS.

Design of Network Attack Detection and Response Scheme based on Artificial Immune System in WDM Networks (WDM 망에서 인공면역체계 기반의 네트워크 공격 탐지 제어 모델 및 대응 기법 설계)

  • Yoo, Kyung-Min;Yang, Won-Hyuk;Kim, Young-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4B
    • /
    • pp.566-575
    • /
    • 2010
  • In recent, artificial immune system has become an important research direction in the anomaly detection of networks. The conventional artificial immune systems are usually based on the negative selection that is one of the computational models of self/nonself discrimination. A main problem with self and non-self discrimination is the determination of the frontier between self and non-self. It causes false positive and false negative which are wrong detections. Therefore, additional functions are needed in order to detect potential anomaly while identifying abnormal behavior from analogous symptoms. In this paper, we design novel network attack detection and response schemes based on artificial immune system, and evaluate the performance of the proposed schemes. We firstly generate detector set and design detection and response modules through adopting the interaction between dendritic cells and T-cells. With the sequence of buffer occupancy, a set of detectors is generated by negative selection. The detection module detects the network anomaly with a set of detectors and generates alarm signal to the response module. In order to reduce wrong detections, we also utilize the fuzzy number theory that infers the degree of threat. The degree of threat is calculated by monitoring the number of alarm signals and the intensity of alarm occurrence. The response module sends the control signal to attackers to limit the attack traffic.

Design of Intrusion Detection System to be Suitable at the Information System Organized by Homogeneous Hosts (동질형 호스트들로 구성된 정보시스템에 적합한 침입탐지시스템의 설계)

  • 이종성;조성언;조경룡
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.1
    • /
    • pp.267-282
    • /
    • 2000
  • With the development of computer&network technology and the growth of its dependance, computer failures not only lose human and material resources but also make organization's competition weak as a side-effect of information society. Therefore, people consider computer security as important factor. Intrusion Detection Systems (IDS) detect intrusions and take an appropriate action against them in order to protect a computer from system failure due to illegal intrusion. A variety of methods and models for IDS have been developed until now, but the existing methods or models aren't enough to detect intrusions because of the complexity of computer network the vulnerability of the object system, insufficient understanding for information security and the appearance of new illegal intrusion method. We propose a new IDS model to be suitable at the information system organized by homogeneous hosts and design for the IDS model and implement the prototype of it for feasibility study. The IDS model consist of many distributed unit sensor IDSs at homogeneous hosts and if any of distributed unit sensor IDSs detect anomaly system call among system call sequences generated by a process, the anomaly system call can be dynamically shared with other unit sensor IDSs. This makes the IDS model can effectively detect new intruders about whole information system.

  • PDF

Hierarchical Event Detection for Low-Energy Operation In Video Surveillance Embedded System (영상 감시용 임베디드 시스템에서의 저에너지 동작을 위한 계층적 사건 탐지)

  • Kim, Tae-Rim;Kim, Bum-Soo;Kim, Dae-Joon;Kim, Geon-Su
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.3
    • /
    • pp.204-211
    • /
    • 2011
  • Embedded systems require intensively complex and high power dissipating modules that have the capability of real-time high performance data processing, wide bandwidth communication, and low power consumption. However, the current battery technology has not been developed as much as meeting the requirements of portable embedded systems for long system lifetime. In this paper, new approach that operates with low energy consumption is proposed to overcome the situation while guaranteeing detection accuracy. The designed method associates a variety of detection algorithms hierarchically to detect events happening around the system. The Change for energy consumption characteristics is shown with change for probabilistic characteristics and those relationships are analytically explained from experiments. Furthermore, several techniques to consume low energy and achieve high detection accuracy are described, depending on the event static or dynamic characteristics.

A Realtime Malware Detection Technique Using Multiple Filter (다중 필터를 이용한 실시간 악성코드 탐지 기법)

  • Park, Jae-Kyung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.7
    • /
    • pp.77-85
    • /
    • 2014
  • Recently, several environment damage caused by malicious or suspicious code is increasing. We study comprehensive response system actively for malware detection. Suspicious code is installed on your PC without your consent, users are unaware of the damage. Also, there are need to technology for realtime processing of Big Data. We must develope advanced technology for malware detection. We must analyze the static, dynamic of executable file for fundamentally malware detection in recently and verified by a reputation for verification. It is need to judgment of similarity for realtime response with big data. In this paper, we proposed realtime detection and verification technology using multiple filter. Our malware study suggests a new direction of realtime malware detection.

Preliminary study on car detection and tracking method using surveillance camera in tunnel environment for accident detection (터널 내 유고상황 자동 판정을 위한 선행 연구: CCTV를 이용한 차량의 탐지와 추적 기법 고찰)

  • Oh, Young-Sup;Shin, Hyu-Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.5
    • /
    • pp.813-827
    • /
    • 2017
  • Surveillance cameras installed in tunnels capture the various video frames effected by dynamic and variable factors. In addition, localizing and managing the cameras in tunnel is not affordable, and quality of capturing frame is effected by time. In this paper, we introduce a new method to detect and track the vehicles in tunnel by using surveillance cameras installed in a tunnel. It is difficult to detect the video frames directly from surveillance cameras due to the motion blur effect and blurring effect on lens by dirt. In order to overcome this difficulties, two new methods such as Differential Frame/Non-Maxima Suppression (DFNMS) and Haar Cascade Detector to track cars are proposed and investigated for their feasibilities. In the study, it was shown that high precision and recall values could be achieved by the two methods, which then be capable of providing practical data and key information to an automatic accident detection system in tunnels.

Graph Database based Malware Behavior Detection Techniques (그래프 데이터베이스 기반 악성코드 행위 탐지 기법)

  • Choi, Do-Hyeon;Park, Jung-Oh
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.4
    • /
    • pp.55-63
    • /
    • 2021
  • Recently, the incidence rate of malicious codes is over tens of thousands of cases, and it is known that it is almost impossible to detect/respond all of them. This study proposes a method for detecting multiple behavior patterns based on a graph database as a new method for dealing with malicious codes. Traditional dynamic analysis techniques and has applied a method to design and analyze graphs of representative associations malware pattern(process, PE, registry, etc.), another new graph model. As a result of the pattern verification, it was confirmed that the behavior of the basic malicious pattern was detected and the variant attack behavior(at least 5 steps), which was difficult to analyze in the past. In addition, as a result of the performance analysis, it was confirmed that the performance was improved by about 9.84 times or more compared to the relational database for complex patterns of 5 or more steps.

Automated Building Fuzzing Environment Using Test Framework (테스트 프레임워크를 활용한 라이브러리 퍼징 환경 구축 자동화)

  • Ryu, Minsoo;Kim, Dong Young;Jeon Sanghoonn;Kim, Huy Kang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.4
    • /
    • pp.587-604
    • /
    • 2021
  • Because the library cannot be run independently and used by many applications, it is important to detect vulnerabilities in the library. Fuzzing, which is a dynamic analysis, is used to discover vulnerabilities for the library. Although this fuzzing technique shows excellent results in terms of code coverage and unique crash counts, it is difficult to apply its effects to library fuzzing. In particular, a fuzzing executable and a seed corpus are needed that execute the library code by calling a specific function sequence and passing the input of the fuzzer to reproduce the various states of the library. Generating the fuzzing environment such as fuzzing executable and a seed corpus is challenging because it requires both understanding about the library and fuzzing knowledge. We propose a novel method to improve the ease of library fuzzing and enhance code coverage and crash detection performance by using a test framework. The systems's performance in this paper was applied to nine open-source libraries and was verified through comparison with previous studies.

Behavior and Script Similarity-Based Cryptojacking Detection Framework Using Machine Learning (머신러닝을 활용한 행위 및 스크립트 유사도 기반 크립토재킹 탐지 프레임워크)

  • Lim, EunJi;Lee, EunYoung;Lee, IlGu
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.6
    • /
    • pp.1105-1114
    • /
    • 2021
  • Due to the recent surge in popularity of cryptocurrency, the threat of cryptojacking, a malicious code for mining cryptocurrencies, is increasing. In particular, web-based cryptojacking is easy to attack because the victim can mine cryptocurrencies using the victim's PC resources just by accessing the website and simply adding mining scripts. The cryptojacking attack causes poor performance and malfunction. It can also cause hardware failure due to overheating and aging caused by mining. Cryptojacking is difficult for victims to recognize the damage, so research is needed to efficiently detect and block cryptojacking. In this work, we take representative distinct symptoms of cryptojacking as an indicator and propose a new architecture. We utilized the K-Nearst Neighbors(KNN) model, which trained computer performance indicators as behavior-based dynamic analysis techniques. In addition, a K-means model, which trained the frequency of malicious script words for script similarity-based static analysis techniques, was utilized. The KNN model had 99.6% accuracy, and the K-means model had a silhouette coefficient of 0.61 for normal clusters.