• Title/Summary/Keyword: 동적 물성

Search Result 272, Processing Time 0.027 seconds

Characteristics of Dynamic Wave Propagation in Peridynamic Analysis with Nonlocal Ghost Interlayer (가상 층간 구조 페리다이나믹 해석의 파동 전파 특성 검토)

  • Ha, Youn Doh
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.4
    • /
    • pp.257-263
    • /
    • 2019
  • Multilayered structures include lamination by relatively thick plies and thin interlayers. For efficient peridynamic analysis of dynamic fracturing multilayered structures, the interlayer is modeled using ghost peridynamic particles while the ply is formulated via real peridynamics. With the nonlocal ghost interlayer, one may keep the discretization resolution low for the ply. In this study, the characteristics of dynamic wave propagation through the nonlocal ghost interlayer in peridynamic analysis are investigated. It is observed that the interlayer not only binds adjacent plies, but also significantly influences energy transfer between plies, and thereby their deformation and motion. In addition, near a surface or boundary, peridynamic particles do not have a full nonlocal neighborhoods. This causes the effective material properties near the surface to be different from those in the bulk. Surface correction based on neighborhood volumes is employed. The impact of surface correction on wave propagation in multilayered structures is investigated.

Synthesis of Carboxylate-Based Anionic surfactant from Coconut Oil Source and Characterization of Interfacial Properties (코코넛 오일로부터 유래된 카르복실레이트계 음이온 계면활성제의 합성 및 계면 특성에 관한 연구)

  • Lee, Ye Jin;Park, Ki Ho;Shin, Hee Dong;Lim, Jong Choo
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.260-267
    • /
    • 2021
  • In this study, a carboxylate-based anionic surfactant SLEC-3 was prepared from coconut oil and the structure was elucidated by using FT-IR, 1H-NMR and 13C-NMR analysis. Measurements of interfacial properties such as critical micelle concentration, static and dynamic surface tensions, emulsification index, and foam stability have shown that SLEC-3 is better in terms of interfacial activity and more effective in lowering interfacial free energy than those of SLES, which has been widely used as a conventional anionic surfactant in the detergent industry. Biodegradability, acute oral toxicity and dermal irritation tests also revealed that SLEC-3 surfactant possesses excellent mildness and low toxicity, indicating the potential applicability in detergents and cleaner products formulation.

Evaluation of Impregnation and Mechanical Properties of Thermoplastic Composites with Different GF Content of GF/PP Commingled Fiber (유리섬유/폴리프로필렌 복합원사의 유리섬유 함량 변화에 따른 열가소성 복합재료의 함침 및 기계적 특성 평가)

  • Jang, Yeong-Jin;Kim, Neul-Sae-Rom;Kwon, Dong-Jun;Yang, Seong Baek;Yeum, Jeong Hyun
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.346-352
    • /
    • 2020
  • In mobility industries, the use of thermoplastic composites increased dynamically. In this study, the mechanical and impregnation properties of continuous glass fiber (GF)/polypropylene (PP) composite were evaluated with different GF contents. The GF/PP commingled fiber was manufactured with different GF contents and continuous GF/PP composite was manufactured using continuous compression molding process. Tensile, flexural, and impact test of specimens were evaluated with different GF contents. The fracture behavior of specimens was proved using field emission-scanning electron microscope images of fracture area and impregnation property was evaluated using dynamic mechanical analyzer and interlaminar shear strength. Finally, the GF/PP composite was the optimized mechanical and impregnation properties using 50 wt.% GF/PP commingled fiber.

Study on the Split Hopkinson Pressure Bar Apparatus for Measuring High-strain Rate Tensile Properties of Plastic Material (플라스틱 소재의 고 변형률 인장특성 평가를 위한 홉킨스바(Split Hopkinson Pressure Bar) 측정 장비에 관한 연구)

  • Han, In-Soo;Lee, Se-Min;Kim, Kyu-Won;Kim, Hak-Sung
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.196-200
    • /
    • 2022
  • Split Hopkinson Pressure Bar (SHPB) is a general test equipment for measuring the mechanical properties of high modulus metal and composite materials at high strain rate. However, for the soft plastic material, it is difficult to hold the specimen and achieve dynamic stress equilibrium due to the weak transmitted signals. In this study, SHPB test apparatus were designed to measure accurately the high strain rate stress-strain curve of the soft plastic materials by changing the incident bar materials and the shape of the specimen holder parts. In addition, to verify the high strain-rate tensile strain data obtained from SHPB, the strain distribution of the specimen was measured and analyzed with a high-speed camera and the digital image correlation (DIC), which was compared with the strain history measured from SHPB.

A Calibration Method of the CSC Model for Considering Material Properties of Ultra-high Performance Concrete (초고성능 강섬유 보강 콘크리트 물성 반영을 위한 소성 기반 콘크리트 CSC 모델 보정기법)

  • Gang-Kyu, Park;MinJoo, Lee;Sung-Wook, Kim;Hyun-Seop, Shin;Jae Heum, Moon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.402-410
    • /
    • 2022
  • The present study introduces a calibration method of the CSC model implemented in the LS-DYNA program for considering the material properties of ultra-high performance concrete(UHPC). Based on previous experimental studies, various parameters, which constitute three shear failure surfaces, pressure-volumetric strain curve, fracture energy, dynamic increase factor(DIF), and so on, are modified. Then, the proposed calibration method is verified by comparing the numerical result with the experimental data through the single element analysis. In addition, based on the established finite element models, the applicability of the calibrated CSC model is examined for UHPC structures subjected to impact and blast loadings.

J2-bounding Surface Plasticity Model with Zero Elastic Region (탄성영역이 없는 J2-경계면 소성모델)

  • Shin, Hosung;Oh, Seboong;Kim, Jae-min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.469-476
    • /
    • 2023
  • Soil plasticity models for cyclic and dynamic loads are essential in non-linear numerical analysis of geotechnical structures. While a single yield surface model shows a linear behavior for cyclic loads, J2-bounding surface plasticity model with zero elastic region can effectively simulate a nonlinearity of the ground response with the same material properties. The radius of the yield surface inside the boundary surface converged to 0 to make the elastic region disappear, and plastic hardening modulus and dilatancy define plastic strain increment. This paper presents the stress-strain incremental equation of the developed model, and derives plastic hardening modulus for the hyperbolic model. The comparative analyses of the triaxial compression test and the shallow foundation under the cyclic load can show stable numerical convergence, consistency with the theoretical solution, and hysteresis behavior. In addition, plastic hardening modulus for the modified hyperbolic function is presented, and a methodology to estimate model variables conforming 1D equivalent linear model is proposed for numerical modeling of the multi-dimensional behavior of the ground.

Markov Chain Monte Carlo Simulation to Estimate Material Properties of a Layered Half-space (층상 반무한 지반의 물성치 추정을 위한 마르코프 연쇄 몬테카를로 모사 기법)

  • Jin Ho Lee;Hieu Van Nguyen;Se Hyeok Lee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.3
    • /
    • pp.203-211
    • /
    • 2023
  • A Markov chain Monte Carlo (MCMC) simulation is proposed for probabilistic full waveform inversion (FWI) in a layered half-space. Dynamic responses on the half-space surface are estimated using the thin-layer method when a harmonic vertical force is applied. Subsequently, a posterior probability distribution function and the corresponding objective function are formulated to minimize the difference between estimations and observed data as well as that of model parameters from prior information. Based on the gradient of the objective function, a proposal distribution and an acceptance probability for MCMC samples are proposed. The proposed MCMC simulation is applied to several layered half-space examples. It is demonstrated that the proposed MCMC simulation for probabilistic FWI can estimate probabilistic material properties such as the shear-wave velocities of a layered half-space.

Classification of Weathering for the Granite and Granite Gneiss in Okcheon Belt-Jecheon${\cdot}$Geumsan${\cdot}$Gimcheon in Korea (옥천대지역 -제천${\cdot}$금산${\cdot}$김천 - 에 분포하는 화강암 및 화강 편마암의 풍화분류에 관한 고찰)

  • Woo, Ik;Park, Hyuk-Jin
    • Economic and Environmental Geology
    • /
    • v.37 no.3
    • /
    • pp.355-364
    • /
    • 2004
  • A study on the weathering grade classification has been performed for granite and granite gneiss in Korea. The qualitative classification criteria of weathering were reviewed and then modified with field studies for the weathered rock masses. The thin section observations and XRD analyses for the different weathering grades rock samples showed the petrographical and petrophysical difference with respect to the weathering : the proportion of weathering-resistant minerals suck at quartz and orthoclase has a tendency to increase with the development of weathering, but that of weathering-sensible minerals such as anorthite and biotite is decreased. The ranges of physical and mechanical rock properties for different weathering grades were obtained from the laboratory rock tests and field tests for the studied rocks. And then, along with $RDI_{sq}$(Fookes et al., 1988), the weathering index $I_{a}$, (Woo, 2003) has been developed in this study to demarcate the weathering grade. Those two indices rely mainly on the water absorption ratio of rock and on the different rock strength. The range of these weathering indices have been determined with the physical and mechanical rock properties that can be obtained from simple field or laboratory tests in 4 grades $I_{a}$> 7 for F, 3.5 < $I_{a}$ < 10 for SW, 1.0 $I_{a}$< 6.0 for MW and $I_{a}$< 2.5 for HW. Consequently, the weathering index could be utilized to classify quantitatively the rock weathering grade, especially for the studied granites and the granite gneiss in Korea.

Haptic Perception presented in Picturesque Gardens - With a Focus on Picturesque Garden in Eighteenth-Century England - (픽처레스크 정원에 나타난 촉지적 지각 - 18세기 영국 픽처레스크 정원을 중심으로 -)

  • Kim, Jin-Seob;Kim, Jin-Seon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.2
    • /
    • pp.37-51
    • /
    • 2016
  • Modern optical mechanisms slanted toward Ocular-centrism have neglected diverse functions of vision, judged objects in abstract and binary perspectives, and organized spaces accordingly, there by neglecting the function of eyes groping objects. Recently, various experiences have been induced through communication with other senses by the complex perception beyond the binary perception system of vision. Haptic perception is dynamic vision that induces accompanying bodily experiences through interaction among the various senses; it recognizes the characteristics of material properties and various sensitive stimulations of human beings. This study elaborates on the major features of haptic perception by examining the theoretical background of this concept, which stimulates the active experience of the subject and determines how characteristics of haptic perception are displayed in picturesque gardens. In order to identify the major features of haptic perception, this study examines how Adolf Hildebrand's theory of vision is developed, expanded, and reinterpreted by Alois Riegl, Wilhelm Worringer, Walter Benjamin, Maurice Merleau Ponty, and Gilles Deleuze in the histories of philosophy and aesthetics. Based thereon, the core differences in haptic perception models and visual perception models are analyzed, and the features of haptic perception are identified. Then, classical gardens are set for visual perception and picturesque gardens are set for haptic perception so that the features from haptic perception identified previously are projected onto the picturesque gardens. The research results drawn from this study regarding features of haptic perception presented in picturesque gardens are as follows. The core differences of haptic perception in contrast to visual perception can be summarized as ambiguity and obscureness of boundaries, generation of dynamic perspectives, induction of motility by indefinite circulation, and strangeness and sublime beauty by the impossibility of perception. In picturesque gardens, the ambiguity and obscureness of boundaries are presented in the irregularity and asymmetric elements of planes and the rejection of a single view, and the generation of dynamic perspectives results from the adoption of narrative structure and overlapping of spaces through the creation of complete views, medium range views, and distant views, which the existing gardens lack. Thus, the scene composition technique is reproduced. The induction of motility by indefinite circulation is created by branching circulation, and strangeness and sublime beauty are presented through the use of various elements and the adoption of 'roughness', 'irregularity', and 'ruins' in the gardens.

Static and Dynamic Analysis for Railway Tunnel according to Filling Materials for overbroken tunnel bottom (철도터널 하부 여굴처리 방법에 대한 정적 및 동적 안정성 검토)

  • Seo, Jae-Won;Cho, Kook-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.5
    • /
    • pp.668-682
    • /
    • 2017
  • Alignments of railways recently constructed in Korea have been straightened due to the advent of high-speed rail, which means increasing the numbers of tunnels and bridges. Overbreak during tunnel construction may be unavoidable, and is very influential on overall stability. Over-excavation in tunneling is also one of the most important factors in construction costs. Overbreak problems around crown areas have decreased with improvements of excavation methods, but overbreak problems around bottom areas have not decreased because those areas are not very influential on tunnel stability compared with crown areas. The filling costs of 10 cm thickness of overbreak at the bottom of a tunnel are covered under construction costs by Korea Railway Authority regulations, but filling costs for more than the covered thickness are considered losses of construction cost. The filling material for overbreak bottoms of tunnels should be concrete, but concrete and mixed granular materials with fractured rock are also used for some sites. Tunnels in which granular materials with fractured rock are used may have a discontinuous section under the concrete slab track. The discontinuous section influences the propagation of waves generated from train operation. When the bottom of a tunnel is filled with only concrete material, the bottom of the tunnel can be considered as a continuous section, in which the waves generated from a train may propagate without reflection waves. However, a discontinuous section filled with mixed granular materials may reflect waves, which can cause resonance of vibration. The filled materials and vibration propagation characteristics are studied in this research. Tunnel bottom filling materials that have ratios of granular material to concrete of 5.0 %, 11.5 %, and 18.0 % are investigated. Samples were made and tested to determine their material properties. Static numerical analyses were performed using the FEM program under train operation load; test results were found to satisfy the stability requirements. However, dynamic analysis results show that some mixed ratios may generate resonance vibration from train operation at certain speeds.