• Title/Summary/Keyword: 동적 균열진전

Search Result 24, Processing Time 0.019 seconds

파괴인성 및 균열진전의 평가

  • 김정규
    • Journal of the KSME
    • /
    • v.28 no.4
    • /
    • pp.328-336
    • /
    • 1988
  • 파괴인성은 내적 및 외적요인 등에 의해 변할 뿐만 아니라 조직의 불균질성 때문에 소성둔화 및 파괴가 균일하게 일어나지 않으므로 이에 대응한 파괴인성을 선택하여 평가함이 가장 중요하다. 또한 기계의 고속화에 따라 충격적인 하중에 의한 동적파괴의 문제가 중요하게 되고 이에 따라 동적파괴인성 평가법의 확립에도 많은 연구가 필요하다. 한편 피로균열진전거동의 실험에는 많은 시간과 인적 노력이 필요로 하며 이러한 문제점을 해결하여 균열진전 측정의 정밀화 및 효율성을 높이기 위해서는 컴퓨터의 이점을 적극적으로 응용할 필요가 있다.

  • PDF

Analysis of Dynamic Crack Propagation using MLS Difference Method (MLS 차분법을 이용한 동적균열전파 해석)

  • Yoon, Young-Cheol;Kim, Kyeong-Hwan;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.1
    • /
    • pp.17-26
    • /
    • 2014
  • This paper presents a dynamic crack propagation algorithm based on the Moving Least Squares(MLS) difference method. The derivative approximation for the MLS difference method is derived by Taylor expansion and moving least squares procedure. The method can analyze dynamic crack problems using only node model, which is completely free from the constraint of grid or mesh structure. The dynamic equilibrium equation is integrated by the Newmark method. When a crack propagates, the MLS difference method does not need the reconstruction of mode model at every time step, instead, partial revision of nodal arrangement near the new crack tip is carried out. A crack is modeled by the visibility criterion and dynamic energy release rate is evaluated to decide the onset of crack growth together with the corresponding growth angle. Mode I and mixed mode crack propagation problems are numerically simulated and the accuracy and stability of the proposed algorithm are successfully verified through the comparison with the analytical solutions and the Element-Free Galerkin method results.

Static and Dynamic Fracture Toughness Evaluation in SiCp/6061Al Composite (SiCp/6061Al복합재료의 정적 및 동적파괴인성 평가)

  • An, Haeng-Geun
    • Korean Journal of Materials Research
    • /
    • v.8 no.6
    • /
    • pp.565-570
    • /
    • 1998
  • SiCp/6061AI 복합재료의 파괴인성을 평가하기 위하여 정적파괴인성에 대해서는 복수시험편법을, 동적파괴인성시험에 대해서는 stop block법을 실시하였다. 주균열은 예비균열의 선단에서 시험편두께방향 전역에 걸쳐서 일시에 발생하는 것이 아니고, 균열발생의 초기단계에서 국부적으로 형성된 균열이 시험편두께방향으로의 균열의 확장을 완료한 후 주균열로 이행해 간다. 정적 및 동적시험에서 컴플라이언스변화율법에 의해 검출된 균열발생점은 균열확장의 완료점과 거의 일치하고 있기 때문에 본 재료의 파괴인성 결정에 유효하다. 본 재료에서 동적파괴인성치는 정적파괴인성치보다 크게 나타났다. 이것은 동적충격시 입자파괴에 의한 에너지의 흡수.분산효과와 균열진전경로의 큰 편향에 기인한다고 생각된다.

  • PDF

충격 및 폭발하중에 의한 동적파괴 해석기법

  • 김경수
    • Computational Structural Engineering
    • /
    • v.10 no.3
    • /
    • pp.22-29
    • /
    • 1997
  • 본 논문에서는 균열이 존재하는 구조부재에 충격이나 폭발하중이 가해진 경우 동적응력확대계수를 구하는 방법들은 논의하고 특히 코오스틱 실험법 및 수치적으로 코오스틱 곡선을 구하여 동적응력확대계수를 구하는 과정을 자세히 설명하였다. 폭발 및 충격에 의한 구조물의 파괴해석은 이와 같은 하중을 받는 압력용기, 빌딩, 초고속선, 해군 함정 등의 파괴강도설계 및 안전성 평가에 핵심기술로 대두되고 있으며 또한 우주항공산업, 고속전철, 암반역학 등의 여러 분야에서 중요한 의미를 갖는다. 따라서 앞으로도 균열진전 및 정지조건, 탄소성 동적파괴해석 및 재료의 충격거동 등에 대한 연구들이 계속되어져야 할 것으로 사료된다.

  • PDF

Nonlocal Peridynamic Models for Dynamic Brittle Fracture in Fiber-Reinforced Composites: Study on Asymmetrically Loading State (섬유강화 복합재의 동적 취성 파괴현상 규명을 위한 비국부 페리다이나믹스 해석법 개발: 비대칭 하중 연구)

  • Ha, Youn Doh;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.4
    • /
    • pp.279-285
    • /
    • 2012
  • In this paper a computational method for a homogenized peridynamics description of unidirectional fiber-reinforced composites is presented. For these materials, dynamic brittle fracture and damage are simulated with the proposed peridynamic model. Compared with observations from dynamic experiments by Coker et al.(2001), the peridynamic computational model can reproduce various characteristics of dynamic fracture and supersonic or intersonic crack growth in asymmetrically loaded unidirectional fiber-reinforced composite plates. Also we analyze the same model in the symmetric loading condition and figure out that the asymmetric loading leads to a much higher propagation speed. Consistent results have been reported in the experiments.

A Study of Rayleigh Damping Effect on Dynamic Crack Propagation Analysis using MLS Difference Method (MLS 차분법을 활용한 동적 균열전파해석의 Rayleigh 감쇠영향 분석)

  • Kim, Kyeong-Hwan;Lee, Sang-Ho;Yoon, Young-Cheol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.6
    • /
    • pp.583-590
    • /
    • 2016
  • This paper presents a dynamic crack propagation algorithm with Rayleigh damping effect based on the MLS(Moving Least Squares) Difference Method. Dynamic equilibrium equation and constitutive equation are derived by considering Rayliegh damping and governing equations are discretized by the MLS derivative approximation; the proportional damping, which has not been properly treated in the conventional strong formulations, was implemented in both the equilibrium equation and constitutive equation. Dynamic equilibrium equation including time relevant terms is integrated by the Central Difference Method and the discrete equations are simplified by lagging the velocity one step behind. A geometrical feature of crack is modeled by imposing the traction-free condition onto the nodes placed at crack surfaces and the effect of movement and addition of the nodes at every time step due to crack growth is appropriately reflected on the construction of total system. The robustness of the proposed numerical algorithm was proved by simulating single and multiple crack growth problems and the effect of proportional damping on the dynamic crack propagation analysis was effectively demonstrated.

Development of Dynamic Photoelastic Experimental Hybrid method for Propagating Cracks in Orthotropic Material (직교이방성체내의 진전 균열에 대한 동적 광탄성 실험의 Hybrid 법 개발)

  • Shin, Dong-Chul;Hawong, Jai-Sug
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.236-241
    • /
    • 2000
  • In this paper, transparent dynamic photoelastic experimental hybrid method for propagating cracks in orthotropic material is developed. Using transparent dynamic photoelastic experimental hybrid method, we can obtain stress intensity factor and separate the stress components from only isochromatic fringe patterns without using isoclinics. It is certified that the dynamic photoelastic experimental hybrid method is very useful for the problems of the dynamic tincture mechanics.

  • PDF

Development of Dynamic Photoelastic Experimental Hybrid Method for Propagating Cracks in Orthotropic Material (직교이방성체내의 진전 균열에 대한 동적 광탄성 실험 Hybrid 법 개발)

  • Shin, Dong-Chul;Hawong, Jai-Sug;Sung, Jong-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1273-1280
    • /
    • 2003
  • In this paper, transparent dynamic photoelastic experimental hybrid method for propagating cracks in orthotropic material was developed. Using transparent dynamic photoelastic experimental hybrid method, we can obtain stress intensity factor and separate the stress components from only isochromatic fringe patterns without using isoclinics. When crack is propagated with constant velocity, the contours of stress components in the vicinity of crack tip in orthotropic material are similar to those of isotropic material or orthotropic material with stationary crack under the static load. Dynamic stress intensity factors are decreased as crack growths. It was certified that the dynamic photoelastic experimental hybrid method was very useful for the analysis of the dynamic fracture mechanics.

Shape Design Sensitivity Analysis of Dynamic Crack Propagation Problems using Peridynamics and Parallel Computation (페리다이나믹스 이론과 병렬연산을 이용한 균열진전 문제의 형상 설계민감도 해석)

  • Kim, Jae-Hyun;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.4
    • /
    • pp.297-303
    • /
    • 2014
  • Using the bond-based peridynamics and the parallel computation with binary decomposition, an adjoint shape design sensitivity analysis(DSA) method is developed for the dynamic crack propagation problems. The peridynamics includes the successive branching of cracks and employs the explicit scheme of time integration. The adjoint variable method is generally not suitable for path-dependent problems but employed since the path of response analysis is readily available. The accuracy of analytical design sensitivity is verified by comparing it with the finite difference one. The finite difference method is susceptible to the amount of design perturbations and could result in inaccurate design sensitivity for highly nonlinear peridynamics problems with respect to the design. It turns out that $C^1$-continuous volume fraction is necessary for the accurate evaluation of shape design sensitivity in peridynamic discretization.

Development of the Dynamic Photoelastic Hybrid Method for Propagating Interfacial Crack of Isotropic/Orthotropic Bi-materials (등방성/직교이방성 이종재료의 진전 계면균열에 대한 동적 광탄성 실험 하이브리드 법 개발)

  • Hwang, Jae-Seok;Sin, Dong-Cheol;Kim, Tae-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1055-1063
    • /
    • 2001
  • When the interfacial crack of isotropic/orthotropic bi-materials is propagated with constant velocity along the interface, stress and displacement components are derived in this research. The dynamic photoelastic experimental hybrid method for the bimaterial is introduced. It is assured that stress components and dynamic photoelastic hybrid developed in this research are valid. Separating method of stress components is introduced from only dynamic photoelastic fringe patterns. Crack propagating velocity of interfacial crack is 69∼71% of Rayleigh wave velocity of epoxy resin. The near-field stress components of bonded interface of bimaterial are similar with those of pure isotopic material and two dissimilar isotropic bimaterials under static or dynamic loading, but very near-field stress components of bonded interface of bimaterial are different from those.