• Title/Summary/Keyword: 동적최단경로

Search Result 65, Processing Time 0.025 seconds

Dynamic Routing and Scheduling of Multiple AGV System (다중 무인운반차량 시스템에서의 동적 라우팅과 스케줄링)

  • 이상훈
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1999.10a
    • /
    • pp.100-107
    • /
    • 1999
  • 무인 운반차량 시스템 (AGV System) 의 이용도가 날로 증가함에 따라 시스템의 최적화 및 운영 방법에 관한 많은 연구가 진행되고 있다. 이에 본 연구에서는 AGV System에서 사용하는 Routing 및 Scheduling 정책들을 연구하고 이를 개선할 수 있는 새로운 방안을 모색한 후, 컴퓨터 모델링 기법을 이용한 보다 객관적인 시뮬레이션을 수행하여 최적의 AGV System과 그에 적합한 운영 정책을 제시하는데 그 목적이 있다. 따라서 본 논문은 크게 AGV Routing 과 Scheduling에 관한 연구로 나누어진다. AGV Routing은 AGV의 이동경로를 설정하는 것으로서 충돌 방지 (Collision Avoidance)와 최단경로 탐색 (Minimal Cost Path Find) 이라는 두 개의 주요 알고리즘으로 이루어진다. AGV Scheduling 은 장비의 공정시간과 AGV의 Loading/Unloading, Charging 시간으로 인해 불규칙한 Event 가 일어났을 경우 AGV 각각의 Jop을 알맞게 선정해주는 정책을 말하며 일반적으로 AGV Selection Rule, Charging Rule이 여기에 속한다. 본 연구에서는 이러한 알고리즘들이 반영된 AGV System을 컴퓨터 모델로 구축하여, 기존 시스템에서 사용되고 있는 여러 운영 정책들의 문제점들을 분석하였으며, Multiple AGV System을 최적화 시키는 운영 정책이 보다 객관적으로 제시되었다.

  • PDF

Dynamic Task Assignment Using A Quasi-Dual Graph Model (의사 쌍대 그래프 모델을 이용한 동적 태스크 할당 방법)

  • 김덕수;박용진
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.20 no.6
    • /
    • pp.62-68
    • /
    • 1983
  • We suggest a Quasi- dual graph model in consideration of dynamic module assignment and relocation to assign task optimally to two processors that have different processing abilities. An optimal module partitioning and allocation to minimize total processing cost can be achieved by applying shortest-path algorithm with time complexity 0(n2) on this graph model.

  • PDF

Generating Multiple Paths by Using Multi-label Vine-building Shortest Path Algorithm (수정형 덩굴망 최단경로 탐색 알고리즘을 이용한 다경로 생성 알고리즘의 개발)

  • Kim, Ik-Ki
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.2 s.73
    • /
    • pp.121-130
    • /
    • 2004
  • In these days, multiple-path generation method is highly demanded in practice and research areas, which can represents realistically travelers behavior in choosing possible alternative paths. The multiple-path generation algorithm is one of the key components for policy analysis related to ATIS, DRGS and ATMS in ITS. This study suggested a method to generate multiple Possible paths from an origin to a destination. The approach of the suggested method is different from an other existing methods(K-shortest path algorithm) such as link elimination approach, link penalty approach and simulation approach. The result of the multi-label vine-building shortest path algorithm(MVA) by Kim (1998) and Kim(2001) was used to generate multiple reasonable possible paths with the concept of the rational upper boundary. Because the MVA algorithm records the cost, back-node and back-back node of the minimum path from the origin to the concerned node(intersection) for each direction to the node, many potential possible paths can be generated by tracing back. Among such large number of the potential possible paths, the algorithm distinguishes reasonable alternative paths from the unrealistic potential possible paths by using the concept of the rational upper boundary. The study also shows the very simple network examples to help the concept of the suggested path generation algorithm.

A Study on the Web Mapping Method and Application of the Topographic Information in an Open Environment (개방환경에서 지형정보의 웹지도화 방법과 적용에 관한 연구)

  • Kim, Nam-Shin
    • Journal of the Korean association of regional geographers
    • /
    • v.13 no.5
    • /
    • pp.563-575
    • /
    • 2007
  • This study aims to investigate a possibility of using topographic information by web mapping in open environments. Web mapping intends to focus on a map analysis and application of the function and geo-visualization. Functions of Web topographic info-map include a spatial analysis, enlargement and minimization, movement, landuse information, user-controling 3 dimension map, landform cross-section analysis, shortest path analysis. The web system adopts SVG(scalable vector graphics), MYSQL, PHP, XML for mapping. SVG has open source policy, so everyone can use it, as well, it is effective on flexible database linkage, cartographic representation. 3D map is intended to represent 3D map by user-controlled sunshine putting pixel opacity by elevation values after making DEM. Landform is designed to show a cross-section analysis and statistics by retrieving height information from database engine with clicking two points on the map. Shortest path analysis within regions uses Dijkstra's algorithm. Near future, resultantly, the area of WebGIS will have to meet more social demands for use-created geo-information and application, so more researches are needed to be web mapping more applicable for users.

  • PDF

Design and Implementation of LoRa-based Emergency Exit Guide System (LoRa 기반 피난 유도 체계의 설계 및 구현)

  • Shin, Jaejun;Eun, Seongbae;So, Sun-Sup;Kim, Byungho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.4
    • /
    • pp.569-574
    • /
    • 2018
  • This paper proposes and implements a LoRa-based emergency exit guide system which can direct the optimal refuge path accounting for the real state of the fires. Each 4-way emergency exit guide sign presents a right direction through one of four LED signs toward the possible exit dynamically calculated by the shortest path algorithm. We constructed a simulation environment with 8 spots of the emergency exit guide signs and 2 exits, which can simulate variant cases of fire accidents, and showed that the proposed algorithm can presents the right guidance for each emergency exit guide sign. We also evaluated the performances of LoRa-based wireless communications using a self developed communication module in the various indoor and outdoor environments. The proposed system can be applied to small and medium sized buildings as well as larger ones in terms of cost efficiency, in which there's no needs to invest for the complex equipments except only sensors and emergency exit guide signs.

Multi-Dimensional Traveling Salesman Problem Scheme Using Top-n Skyline Query (Top-n 스카이라인 질의를 이용한 다차원 외판원 순회문제 기법)

  • Jin, ChangGyun;Oh, Dukshin;Kim, Jongwan
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.1
    • /
    • pp.17-24
    • /
    • 2020
  • The traveling salesman problem is an algorithmic problem tasked with finding the shortest route that a salesman visits, visiting each city and returning to the started city. Due to the exponential time complexity of TSP, it's hard to implement on cases like amusement park or delivery. Also, TSP is hard to meet user's demand that is associated with multi-dimensional attributes like travel time, interests, waiting time because it uses only one attribute - distance between nodes. This paper proposed Top-n Skyline-Multi Dimension TSP to resolve formerly adverted problems. The proposed algorithm finds the shortest route faster than the existing method by decreasing the number of operations, selecting multi-dimensional nodes according to the dominance of skyline. In the simulation, we compared computation time of dynamic programming algorithm to the proposed a TS-MDT algorithm, and it showed that TS-MDT was faster than dynamic programming algorithm.

A Study of Routing based on Adjacency Matrix in Ad hoc Networks (애드 혹 네트워크에서 인접 행렬 기반의 라우팅 연구)

  • Lee, Sung-Soo;Kim, Jeong-Mi;Park, Hee-Joo;Kim, Chong-Gun
    • The KIPS Transactions:PartC
    • /
    • v.15C no.6
    • /
    • pp.531-538
    • /
    • 2008
  • With the dynamic and mobile nature of ad hoc networks, links may fail due to topology changes. So, a major challenge in ad hoc network is dynamically to search paths from a source to destination with an efficient routing method, which is an important issue for delay-sensitive real-time application. The main concerns of graph theory in communications are finding connectivity and searching paths using given nodes. A topology of the nodes in ad hoc networks can be modeled as an adjacency matrix. In this paper, based on this adjacency matrix, we propose new path search algorithms using a sequence of matrix calculation. The proposed algorithms can search paths from a destination to a source using connectivity matrix. Two matrix-based algorithms for two different purposes are proposed. Matrix-Based Backward Path Search(MBBS) algorithm is designed for shortest path discovery and Matrix-Based Backward Multipath Search(MBBMS) algorithm is for multipath search.

A Optimization Study of UAV Path Planning Generation based-on Rapid-exploring Random Tree Method (급속탐색랜덤트리기법 기반의 무인 비행체 경로계획생성 최적화 연구)

  • Jae-Hwan Bong;Seong-Kyun Jeong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.981-988
    • /
    • 2023
  • As the usage of unmanned aerial vehicles expands, the development and the demand of related technologies are increasing. As the frequency of operation increases and the convenience of operation is emphasized, the importance of related autonomous flight technology is also highlighted. Establishing a path plan to reach the destination in autonomous flight of an unmanned aerial vehicle is important in guidance and control, and a technology for automatically generating path plan is required in order to maximize the effect of unmanned aerial vehicle. In this study, the optimization research of path planning using rapid-exploring random tree method was performed for increasing the effectiveness of autonomous operation. The path planning optimization method considering the characteristics of the unmanned aerial vehicle is proposed. In order to achieve indexes such as optimal distance, shortest time, and passage of mission points, the path planning was optimized in consideration of the mission goals and dynamic characteristics of the unmanned aerial vehicle. The proposed methods confirmed their applicability to the generation of path planning for unmanned aerial vehicles through performance verification for obstacle situations.

Developing algorithms for providing evacuation and detour route guidance under emergency conditions (재난.재해 시 대피 및 우회차량 경로 제공 알고리즘 개발)

  • Yang, Choong-Heon;Son, Young-Tae;Yang, In-Chul;Kim, Hyun-Myoung
    • International Journal of Highway Engineering
    • /
    • v.11 no.3
    • /
    • pp.129-139
    • /
    • 2009
  • The transportation network is a critical infrastructure in the event of natural and human caused disasters such as rainfall, snowfall, and terror and so on. Particularly, the transportation network in an urban area where a large number of population live is subject to be negatively affected from such events. Therefore, efficient traffic operation plans are required to assist rapid evacuation and effective detour of vehicles on the network as soon as possible. Recently, ubiquitous communication and sensor network technology is very useful to improve data collection and connection related emergency information. In this study, we develop a specific algorithm to provide evacuation route and detour information only for vehicles under emergency situations. Our algorithm is based on shortest path search technique and dynamic traffic assignment. We perform the case study to evaluate model performance applying hypothetical scenarios involved terror. Results show that the model successfully describe effective path for each vehicle under emergency situation.

  • PDF

Economic Ship Routing System by a Path Search Algorithm Based on an Evolutionary Strategy (진화전략 기반 경로탐색 알고리즘을 활용한 선박경제운항시스템)

  • Bang, Se-Hwan;Kwon, Yung-Keun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.9
    • /
    • pp.767-773
    • /
    • 2014
  • An economic ship routing means to sail a ship with a goal of minimizing the fuel consumption by utilizing weather forecast information, and there have been various systems which have been recently studied. For a successful economic ship routing system, it is needed to properly control an engine power or change a geographical path considering weather forecast. An optimal geographical path is difficult to be determined, though, because it is a minimal dynamic-cost path search problem where the actual fuel consumption is dynamically variable by the weather condition when the ship will pass the area. In this paper, we propose an geographical path-search algorithm based on evolutionary strategy to efficiently search a good quality solution out of tremendous candidate solutions. We tested our approach with the shortest path-based sailing method over seven testing routes and observed that the former reduced the estimated fuel consumption than the latter by 1.82% on average and the maximum 2.49% with little difference of estimated time of arrival. In particular, we observed that our method can find a path to avoid bad weather through a case analysis.