Abstract
With the dynamic and mobile nature of ad hoc networks, links may fail due to topology changes. So, a major challenge in ad hoc network is dynamically to search paths from a source to destination with an efficient routing method, which is an important issue for delay-sensitive real-time application. The main concerns of graph theory in communications are finding connectivity and searching paths using given nodes. A topology of the nodes in ad hoc networks can be modeled as an adjacency matrix. In this paper, based on this adjacency matrix, we propose new path search algorithms using a sequence of matrix calculation. The proposed algorithms can search paths from a destination to a source using connectivity matrix. Two matrix-based algorithms for two different purposes are proposed. Matrix-Based Backward Path Search(MBBS) algorithm is designed for shortest path discovery and Matrix-Based Backward Multipath Search(MBBMS) algorithm is for multipath search.
애드 혹 네트워크의 동적인 환경에서는 네트워크 토폴로지의 변화로 잦은 경로 단절과 이로 인한 전송 지연이 일어난다. 따라서 전송 지연에 민감한 애드 혹 네트워크의 실시간 환경에서는 효율적인 라우팅 방법이 주요 관심이 될 수밖에 없다. 그래프를 이용하는 통신 관련 이론의 주요 관심 중 하나는 주어진 노드들 중에서 어떠한 노드들이 연결되어 있으며, 최소 비용을 가진 경로는 어떻게 쉽게 찾을 것인가 하는 것 들이다. 애드 혹 네트워크에서 노드간의 연결은 인접 행렬로 나타낼 수 있다. 본 논문에서는 이러한 인접 행렬에 기반한 일련의 행렬 연산을 이용한 경로 검색 기법을 제안한다. 인접 행렬의 연산을 통해 구해진 연결 행렬을 이용하여 목적지로부터 소스까지 경로를 구하는 방법이다. 최단 경로를 검색하기 위한 인접 행렬 기반의 역검색 방법과 노드-비중첩 다중 경로를 검색하기 위한 인접 행렬 기반의 노드-비중첩 다중 경로 역검색 방법을 제안한다.