• Title/Summary/Keyword: 동적운영

Search Result 552, Processing Time 0.028 seconds

Study on Visualization of Multi-domain Network Topology (멀티 도메인 네트워크 토폴로지 시각화 연구)

  • Beom-Hwan Chang
    • Convergence Security Journal
    • /
    • v.22 no.4
    • /
    • pp.169-178
    • /
    • 2022
  • In general, organizations operating multi-domain networks find it difficult to represent and manage multiple domain net works on a single screen space. Instead, most of them are managed with multiple screens visualizing network topology by domain or partitioning one screen area into multiple domains. We propose an efficient method to visualize the topology using only minimal connection information between domain-agnostic nodes in this work. This method visualizes the topology by utilizing centrality indices representing the influence of nodes in the network. Furthermore, the method dynamically segments the entire node's display area using virtual Root nodes to auto-separate domains and weights of child nodes and placing nodes in 3D space. Thus, although it is a straightforward method, the multi-domain network topology can be visualized with only minimal connection information between nodes.

Installation and Operation of a Double-Sided Laser Heating System for the Synthesis of Novel Materials Under Extreme Conditions (극한 조건하에서 신물질 합성을 위한 양쪽 가열 레이저 가열 시스템 설치 및 운영)

  • Ko, Young-Ho;Oh, Kyoung Hun;Kim, Kwang Joo
    • New Physics: Sae Mulli
    • /
    • v.69 no.10
    • /
    • pp.1107-1114
    • /
    • 2019
  • Producing extremely stable high temperature and pressure condition is crucial in order to synthesize novel materials with various functions and to investigate their static and dynamic properties. Already a high pressure in the Mbar range, which is necessary to make novel materials, can be acquired by using a Diamond Anvil Cell (DAC), In this study, a laser-heating system combined with the DAC was designed and installed using two 1064-nm, 100-W fiber lasers on different sides of the DAC to heat the sample and three spectrometers to measure the temperature, pressure, and Raman spectra. A stainless-steel gasket, which is generally used as a sample chamber in high-pressure experiments, was heated to make a thermal radiation source, and the temperature of the heated gasket was obtained by measuring the spectrum of the radiation. By applying this technique, we were able to make various materials and to investigate their physical properties under extreme conditions.

A Digital Twin-based Approach for VANET Simulation in Real Urban Environments

  • Jonghyeon Choe;Youngboo Kim;Sangdae Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.8
    • /
    • pp.113-122
    • /
    • 2024
  • In this paper, we conducted a thorough investigation of existing simulators for running simulations of Vehicular Adhoc Networks (VANET) in realistic road environments, such as digital twins. After careful consideration, we chose a simulator that combines OSM (OpenStreetMap), SUMO (Simulation of Urban MObility), and OMNeT++ due to its open-source nature and efficient performance. Using this integrated simulator, we carried out VANET simulations in both simple virtual road environments and realistic road environments. Our findings revealed significant differences in VANET performance between the two types of environments, emphasizing the need to consider realistic road and traffic environments for reliable VANET operation. Furthermore, our simulations demonstrated significant performance variability, with performance degradation observed as vehicle density decreased and dynamic changes in network topology increased. These results underscore the importance of digital twin-based approaches in VANET research, highlighting the need to simulate real-world road and traffic conditions rather than relying on simple virtual road environments.

Study of the Transition of a Skateboarding Space in an Urban Park (도시공원에서 스케이트보드 활동 공간 발달에 관한 연구)

  • Cho, Han-sol;Son, Young-hoon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.6
    • /
    • pp.26-39
    • /
    • 2016
  • This research paper explores the process of developing skateboarding spaces in urban parks. Skateboarding is one of the most popular sport activities representative of urban parks. This research paper will analyze the process of introducing skateboarding activities into park spaces and their acceptance by the general public as well as derive meaningful general implications for park space development planning. The research method is a discourse analysis of newspaper articles regarding skateboarding issued between the 1960s and 2010s. These articles are the main resources to show the creation of a skateboarding culture, generation of skate park spaces, and the extinction of these spaces during the research period. The result of this research is as follows. There are reasons that allowed for the creation of skate park spaces in urban parks. First of all, positive associations that people have regarding skateboarding have influenced the park's users and operators' decisions that a park is proper space for skateboarding activities, and the agreement to remodel the park space. Secondly, skate parks became a space for multiple-uses that can be shared with other emerging sports, which resulted in a building boom of skateboarding spaces in urban parks. Thirdly, urban parks and their new culture of active sports became a marketing tool used by local governments to attract new inhabitants to their new towns. On the contrary, there are three main reasons for the deterioration of skate parks. First of all, within parks in which skateboarding activities collided with other park usage, the skate parks disappeared. Secondly, skate parks built specifically for competitive skateboarding events and without consideration of casual skaters disappeared, as these facilities were not sustainable for use in the long term. Thirdly, the golden age of skate park skateboarding did not last long, as skateboarding trends shifted from trick performance to street skating, where skate parks are no longer needed. For this reasons, the exclusive use of park space for skateboarding activities has faded from public interest. The findings of this research suggest how sport activities should be introduced to urban parks. At first, each park's management needs to identify a sport suitable for long-term development, and not only plan for temporal events or follow fleeting trends. Secondly, the park's management systems should reflect a type of sport activity that would not only be popular at the beginning of the spaces development, but also take into consideration how these activities will change over time. Lastly, in cases where there are conflicts between sport activities and other activities in urban parks, attempts should be made to suggest feasible solutions other than the liquidation of sport spaces. This study explains the development process of sport spaces offered in urban parks, by thorough research of the process of acceptance of skateboarding activities in current urban park systems. This conclusion also indicates further areas for research with the purpose of understanding general best practices in urban parks sport space planning.

Development of Summer Leaf Vegetable Crop Energy Model for Rooftop Greenhouse (옥상온실에서의 여름철 엽채류 작물에너지 교환 모델 개발)

  • Cho, Jeong-Hwa;Lee, In-Bok;Lee, Sang-Yeon;Kim, Jun-Gyu;Decano, Cristina;Choi, Young-Bae;Lee, Min-Hyung;Jeong, Hyo-Hyeog;Jeong, Deuk-Young
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.246-254
    • /
    • 2022
  • Domestic facility agriculture grows rapidly, such as modernization and large-scale. And the production scale increases significantly compared to the area, accounting for about 60% of the total agricultural production. Greenhouses require energy input to create an appropriate environment for stable mass production throughout the year, but the energy load per unit area is large because of low insulation properties. Through the rooftop greenhouse, one of the types of urban agriculture, energy that is not discarded or utilized in the building can be used in the rooftop greenhouse. And the cooling and heating load of the building can be reduced through optimal greenhouse operation. Dynamic energy analysis for various environmental conditions should be preceded for efficient operation of rooftop greenhouses, and about 40% of the solar energy introduced in the greenhouse is energy exchange for crops, so it should be considered essential. A major analysis is needed for each sensible heat and latent heat load by leaf surface temperature and evapotranspiration, dominant in energy flow. Therefore, an experiment was conducted in a rooftop greenhouse located at the Korea Institute of Machinery and Materials to analyze the energy exchange according to the growth stage of crops. A micro-meteorological and nutrient solution environment and growth survey were conducted around the crops. Finally, a regression model of leaf temperature and evapotranspiration according to the growth stage of leafy vegetables was developed, and using this, the dynamic energy model of the rooftop greenhouse considering heat transfer between crops and the surrounding air can be analyzed.

Comparison of Traffic Crash Characteristics Using Spatio-temporal Analysis in GIS-T (GIS-T 환경에서 시공간분석을 이용한 교통사고 특성 비교 - 도로 폐쇄 전후비교를 중심으로-)

  • Kim, Ho-Yong;Baik, Ho-Jong;Kim, Ji-Sook
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.2
    • /
    • pp.41-53
    • /
    • 2010
  • Traffic safety assessment is often accomplished by analyzing the number of crashes occurring in some geographic space over certain specific time duration. In this paper, we introduce a procedure that can efficiently analyze spatial and temporal changes in traffic crashes before-and-after implementation of a certain traffic controlling measure. For the analysis, crash frequency data before-and-after closing a major highway around St. Louis in Missouri was collected through Transportation Management System(TMS) database that is maintained by Missouri Department of Transportation (MoDOT). In order to identify any spatial and temporal pattern in crashes, each crash is pinpointed on a map using the dynamic segmentation in GIS. Then, the identified pattern is statistically confirmed using an analysis of variance table. The advantage of this approach is to easily assess spatial and temporal trend of crashes that are not readily attainable otherwise. The results from this study can possibly be applied in enhancing the highway safety assessment procedure. This paper also makes several suggestions for future development of a comprehensive transportation data system in Korea which is similar to MoDOT's TMS database.

Study on Combined Use of Inclination and Acceleration for Displacement Estimation of a Wind Turbine Structure (경사 및 가속도 계측자료 융합을 통한 풍력 터빈의 변위 추정)

  • Park, Jong-Woong;Sim, Sung-Han;Jung, Byung-Jin;Yi, Jin-Hak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • Wind power systems have gained much attention due to the relatively high reliability, good infrastructures and cost competitiveness to the fossil fuels. Advances have been made to increase the power efficiency of wind turbines while less attention has been focused on structural integrity assessment of structural sub-systems such as towers and foundations. Among many parameters for integrity assessment, the most perceptive parameter may be the induced horizontal displacement at the hub height although it is very difficult to measure particularly in large-scale and high-rise wind turbine structures. This study proposes an indirect displacement estimation scheme based on the combined use of inclinometers and accelerometers for more convenient and cost-effective measurements. To this end, (1) the formulation for data fusion of inclination and acceleration responses was presented and (2) the proposed method was numerically validated on an NREL 5 MW wind turbine model. The numerical analysis was carried out to investigate the performance of the propose method according to the number of sensors, the resolution and the available sampling rate of the inclinometers to be used.

Development of Simulation Technology Based on 3D Indoor Map for Analyzing Pedestrian Convenience (보행 편의성 분석을 위한 3차원 실내지도 기반의 시뮬레이션 기술 개발)

  • KIM, Byung-Ju;KANG, Byoung-Ju;YOU, So-Young;KWON, Jay-Hyoun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.3
    • /
    • pp.67-79
    • /
    • 2017
  • Increasing transportation dependence on the metro system has lead to the convenience of passengers becoming as important as the transportation capacity. In this study, a pedestrian simulator has been developed that can quantitatively assess the pedestrian environment in terms of attributes such as speed and distance. The simulator consists of modules designed for 3D indoor map authoring and algorithmic pedestrian modeling. Module functions for 3D indoor map authoring include 3D spatial modeling, network generation, and evaluation of obtained results. The pedestrian modeling algorithm executes functions such as conducting a path search, allocation of users, and evaluation of level of service (LOS). The primary objective behind developing the said functions is to apply and analyze various scenarios repeatedly, such as before and after the improvement of the pedestrian environment, and to integrate the spatial information database with the dynamic information database. Furthermore, to demonstrate the practical applicability of the proposed simulator in the future, a test-bed was constructed for a currently operational metro station and the quantitative index of the proposed improvement effect was calculated by analyzing the walking speed of pedestrians before and after the improvement of the passage. The possibility of database extension for further analysis has also been discussed in this study.

Cloud Detection Using HIMAWARI-8/AHI Based Reflectance Spectral Library Over Ocean (Himawari-8/AHI 기반 반사도 분광 라이브러리를 이용한 해양 구름 탐지)

  • Kwon, Chaeyoung;Seo, Minji;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_1
    • /
    • pp.599-605
    • /
    • 2017
  • Accurate cloud discrimination in satellite images strongly affects accuracy of remotely sensed parameter produced using it. Especially, cloud contaminated pixel over ocean is one of the major error factors such as Sea Surface Temperature (SST), ocean color, and chlorophyll-a retrievals,so accurate cloud detection is essential process and it can lead to understand ocean circulation. However, static threshold method using real-time algorithm such as Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Himawari Imager (AHI) can't fully explained reflectance variability over ocean as a function of relative positions between the sun - sea surface - satellite. In this paper, we assembled a reflectance spectral library as a function of Solar Zenith Angle (SZA) and Viewing Zenith Angle (VZA) from ocean surface reflectance with clear sky condition of Advanced Himawari Imager (AHI) identified by NOAA's cloud products and spectral library is used for applying the Dynamic Time Warping (DTW) to detect cloud pixels. We compared qualitatively between AHI cloud property and our results and it showed that AHI cloud property had general tendency toward overestimation and wrongly detected clear as unknown at high SZA. We validated by visual inspection with coincident imagery and it is generally appropriate.

A Hybrid Mapping Technique for Logical Volume Manager in SAN Environments (SAN 논리볼륨 관리자를 위한 혼합 매핑 기법)

  • 남상수;피준일;송석일;유재수;최영희;이병엽
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.10 no.1
    • /
    • pp.99-113
    • /
    • 2004
  • A new architecture called SAN(Storage Area Network) was developed in response to the requirements of high availability of data, scalable growth, and system performance. In order to use SAN more efficiently, most of SAN operating softwares support storage virtualization concepts that allow users to view physical storage devices attached to SAN as a large volume virtually h logical volume manager plays a key role in storage virtualization. It realizes the storage virtualization by mapping logical addresses to physical addresses. A logical volume manager also supports a snapshot that preserves a volume image at certain time and on-line reorganization to allow users to add/remove storage devices to/from SAN even while the system is running. To support the snapshot and the on-line reorganization, most logical volume managers have used table based mapping methods. However, it is very difficult to manage mapping table because the mapping table is large in proportion to a storage capacity. In this paper, we design and implement an efficient and flexible hybrid mapping method based on mathematical equations. The mapping method in this paper supports a snapshot and on-line reorganization. The proposed snapshot and on-line reorganization are performed on the reserved area which is separated from data area of a volume. Due to this strategy normal I/O operations are not affected by snapshot and reorganization. Finally, we show the superiority of our proposed mapping method through various experiments.