• Title/Summary/Keyword: 동적영향계수

Search Result 305, Processing Time 0.039 seconds

Free Vibration Analysis of Disk Structure by the Transfer Influence Coefficient Method (전달영향계수법에 의한 원판구조물의 자유진동해석)

  • ;末岡淳男;近騰孝廣
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.5
    • /
    • pp.1439-1446
    • /
    • 1991
  • 본 연구에서는 동적영향계수의 축차전달에 그 개념을 두고 있는 전달영향계수 법을, 2층 원판구조물의 자유진동해석애 적용해서, 그 알고리즘을 정식화 하고 전달매 트릭스법과 비교 검토하였다.

Dynamic Amplification Factor of Concrete-Filled Tubular Arch (CFTA) Girder due to the Effects of Moving Vehicles and PT Tendons (이동차량 및 PT 텐던 영향에 따른 CFTA 거더의 동적증폭계수 비교)

  • Roh, Hwa-Sung;Hong, Sang-Hyun;Lee, Sang-Yun;Park, Kyung-Hoon;Lee, Jong-Seh
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.743-746
    • /
    • 2011
  • 본 연구에서는 유한요소해석을 이용하여 차량속도 및 긴장재의 설계에 따른 CFTA 거더의 동적거동 및 동적증폭계수를 분석하였다. 긴장재의 해석변수로서는 긴장재의 양과 긴장력을 고려하였으며 차량하중은 도로교설계기준의 DB-24 하중을 선택하였다. 차량하중은 3축-2트랙에 작용하는 등가절점하중으로 변환하여 속도에 따라 시간함수로 모델링하였다. 긴장재의 양은 외측 �� 내측 덕트의 유무에 따라 변화시켰으며 긴장력은 설계긴장력의 0%에서 100%까지 25%씩 증가시켰다. 차량속도는 40km/hr에서 100km/hr까지 20km/hr씩 증가시켰으며, 해석결과 긴장재의 긴장력 변화는 거더의 동적거동에 영향을 주지 않았으며 초기처짐에만 영향을 주었다. 긴장재의 양에 따라서는 거더의 동적거동이 다르게 나타났으며 긴장재의 양이 적을 수록 동적처짐은 증가하였다. 이를 바탕으로 거더의 동적증폭계수(DAF)를 산출하였으며, 이 결과 긴장재가 없는 경우에도 도로교표준시방서에서 정한 기준 값보다 매우 작은 거동을 보였다.

  • PDF

Effects of Cable Rupture on Dynamic Responses of a Concrete Cable-stayed Bridge (케이블 파단이 콘크리트사장교 동적거동에 미치는 영향)

  • Kim, Yu Hee;Go, Hyeong Gyu;Kim, Jae Cheon;Shin, Soobong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.3
    • /
    • pp.84-91
    • /
    • 2012
  • This paper aims to investigate the effects of cable rupture on the dynamic responses of concrete cable-stayed bridges in comparison with those of steel composite ones. It examines an adequate analysis method for simulating cable rupture using a time history function and evaluates the design guidelines for dynamic amplification factor (DAF). The computed DAFs from a concrete cable-stayed bridge are compared with those from a steel composite one based on the design guideline. As a conclusion, the current design guidelines for DAF may be reliable in overall but show some unstable cases despite satisfying the design guidelines, especially for concrete cable-stayed bridges.

Effect of Notch Geometries on Dynamic Stress Concentration Factor (노치 선단(균열 주위)의 기하학적 형상이 동적 응력집중계수(동적균열전파)에 미치는 영향)

  • O.S. Lee;H.S. Jeon;K.H. Byun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.4
    • /
    • pp.46-54
    • /
    • 1998
  • In this paper, the erect of notch geometries on dynamic stress concentration was investigated by using the dynamic photoelasticity and the drop weight loading system Dynamic stress fields arisen by elastic wave through the loading system around various types of notch geometries were captured by using $10^6/sec$ frame rate Cranz-Shardin camera system with 12 photographic frames. We found that dynamic stress concentrations around the notch tip and comer were highly dependent on the change in notch geometries. The elders of dynamic stress singularity ware determined with respect to varying geometries of notches and we explained dynamic stress concentration in terms of the orders of dynamic stress singularity.

  • PDF

Sensitivity Analysis of 3-Dimensional FE Models for Jointed Concrete Pavements (줄눈 콘크리트포장 3차원 유한요소모델의 민간도 분석)

  • Yoo, Taeseok;Sim, Jongsung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.435-444
    • /
    • 2006
  • This paper investigates the effect of 3-dimensional FE models to evaluation results of jointed concrete pavements which is back-calculated by AREA method. Sensitivity of 3-dimensional FE models developed to simulate the behavior of real jointed concrete pavement are analyzed after compared with 2-dimensional FE models using ILLISLAB. In comparison with 2-dimensional models, influence of concrete contraction under loading plate and base layer on surface deflections is more than that of loading configuration. Deflections at 3-dimensional model between linear and nonlinear temperature distribution under same temperature difference are similar, but noticeable differences are investigated in low elastic modulus of foundations. Dynamic deflections under loading plate are larger than static deflections in high elastic modulus of foundation, but smaller in low elastic modulus. Lower dynamic modulus of subgrade reactions are backcalculated by dynamic deflections than by static deflections. But reverse trend is investigated in the backcalculated elastic modulus of concrete which describes trends of the field backcalculation values calculated from AREA method.

The Dynamic Effect of Highspeed Trains on Railway Bridges (고속철도 차량의 주행이 교량에 미치는 충격효과)

  • Yu, Chul Soo;Kang, Young Jong;Kim, Jong Heun;Kweon, Jae Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.2 s.35
    • /
    • pp.187-199
    • /
    • 1998
  • The highspeed railway bridge which support continuous and high moving mass evalute the dynamic state and make the displacement of the bridge makes more or less, but up to this time the bridges are designed by the static design concept. for example when we design bridge we use impact factor, which only times the static load makes dynamic load. But becouse it simples. it can't express all of the effects. And so, in this report we study the modeling method of the moving mass and the dynamic factor.

  • PDF

Dynamic Deformation Properties of Coarse Granular Materials with Respect to Gradation Characteristics (조립재료의 입도특성에 따른 동적 변형특성 평가)

  • Ha, Ik-Soo;Kim, Nam-Ryong
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.8
    • /
    • pp.5-14
    • /
    • 2013
  • Coarse granular geomaterials containing large gravels are broadly used for construction of large geotechnical systems such as dams, levees, railways and backfills. It is necessary to evaluate deformation characteristics of these materials for dynamic analysis, e.g. seismic design. This study presents evaluation of dynamic deformation characteristics of coarse materials using large scale resonant column testing apparatus, which uses specimens with 200 mm in diameter and 400 mm in height, and the effects of gradation characteristics on maximum shear modulus, shear modulus reduction curve and damping characteristics were investigated. From experimental study using rock-fill materials for a dam, we could see that the largest or mean particle size affects the shape of shear modulus reduction curve. When the specimens are prepared under the same conditions for maximum particle size, the coefficient of uniformity affects the confining stress exponent of maximum shear modulus. It could be concluded that the maximum particle size is an factor which affects shear modulus reduction curve, and that the coefficient of uniformity is for small strain shear modulus, especially for the sensitivity to confining stress.

A Study of Computation Methods for Dynamic Damping Coefficients of an Airship (비행선의 동적 감쇠계수 계산 방법에 관한 연구)

  • Park, Su Hyeong;Jang, Byeong Hui;Kim, Yu Jin;Gwon, Jang Hyeok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.5
    • /
    • pp.10-17
    • /
    • 2003
  • Dynamic stability is critically required to stabilize an airship which is statically unstable. Numerical computations were performed in order to support and confirm the foced oscillation wind tunnel tests. To analyze the low-speed flow filed around the airship, a low-Mach number preconditioned method was applied. Using two computation methods, variations of the dynamic damping coefficients were examined. Numerical results show that it is dynamically stable for three directional moments, but unstable for normal or side force. It is revealed that the damping coefficients are more sensitive to the direction of the angular rate than the angle of attack or the magnitude og angular rate.

Characteristics of Dynamic Parameter of Sandy Soil According to Grout Injection Ratio (그라우트 주입율 변화에 따른 사질토의 동적계수 특성)

  • Ahn, Kwangkuk;Park, Junyoung;Oh, Jonggeun;Lee, Jundae;Han, Kihwan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.5
    • /
    • pp.59-63
    • /
    • 2011
  • Ground dynamic parameter such as shear elastic modulus and damping ratio is a very important variable in design of ground-structure with repeated load and dynamic load. Shear elastic modulus and damping ratio on small strain below linear limit strain is constant regardless of strain. Shear elastic modulus as the maximum shear elastic modulus and damping ratio as the minimum damping ratio were considered. As a lot of experiment related to the maximum shear elastic modulus, which is in dynamic deformation characteristics, have been conducted, many factors including voiding ratio, over consolidation ratio(OCR), confining pressure, geology time, PI, and the number of load cycle affect to dynamic soil characteristic. However, the research of ground dynamic characteristic improved with grout is absent such as underground continuous wall construction, deep mixing method, umbrella arch method. In order to investigate the dynamic soil characteristics improved with grout, in this study, resonant column tests were performed with changing water content(20%, 25%, 30%) and injection ratio of grout(5%, 10%, 15%), cure time(7th day, 28th day) As a result, shear elastic modulus and damping ratio, which are ground dynamic parameter, are affected by the injection ratio of milk grout, cure time and water content.

Numerical Computation of Dynamic Stress Intensity Factors in Axisymmetric Problems (축대칭 문제에서의 동적 응력확대계수의 계산)

  • 이성희;심우진
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.2
    • /
    • pp.207-216
    • /
    • 2003
  • In this paper, the finite element method for the elastodynamic axisymmetric fracture analysis is presented in matrix form through the application of the Galerkin method to the time integral equations of motion with no inertia forces. Isoparametric quadratic quadrilateral element and triangular crack tip singular elements with one-quarter node are used in the mesh division of the finite element model. To show the validity and accuracy of the proposed method, the infinite elastic medium with the penny shaped crack is solved first and compared with the analytical solution and the numerical results by the finite difference method and the boundary element method existing in the published literatures, and then the dynamic stress intensity factors of solid and hollow cylinders of finite dimensions haying penny-shaped cracks and internal and external circumferential tracks are computed in detail.