• Title/Summary/Keyword: 동적시간교정법

Search Result 3, Processing Time 0.02 seconds

Fault Detection and Diagnosis of Induction Motors using LPC and DTW Methods (LPC와 DTW 기법을 이용한 유도전동기의 고장검출 및 진단)

  • Hwang, Chul-Hee;Kim, Yong-Min;Kim, Cheol-Hong;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.3
    • /
    • pp.141-147
    • /
    • 2011
  • This paper proposes an efficient two-stage fault prediction algorithm for fault detection and diagnosis of induction motors. In the first phase, we use a linear predictive coding (LPC) method to extract fault patterns. In the second phase, we use a dynamic time warping (DTW) method to match fault patterns. Experiment results using eight vibration data, which were collected from an induction motor of normal fault states with sampling frequency of 8 kHz and sampling time of 2.2 second, showed that our proposed fault prediction algorithm provides about 45% better accuracy than a conventional fault diagnosis algorithm. In addition, we implemented and tested the proposed fault prediction algorithm on a testbed system including TI's TMS320F2812 DSP that we developed.

Damage Estimation of Bridge Structures Using System Identification (동특성추정법을 이용한 교량구조물의 손상도 추정)

  • 김원종;강용중
    • Computational Structural Engineering
    • /
    • v.6 no.2
    • /
    • pp.71-78
    • /
    • 1993
  • A method to estimate damage of bridge structures is developed using system identification approach. Dynamic behavior of damaged structures is represented by a non-linear hysteretic moment model. Structural properties can be evaluated through system identification. To incorporate variability of the structural properties and uncertainties of structural response, damage is represented as random quantities. Numerical example is shown for the bridge structure under different ground excitation.

  • PDF

On Optimizing Dissimilarity-Based Classifications Using a DTW and Fusion Strategies (DTW와 퓨전기법을 이용한 비유사도 기반 분류법의 최적화)

  • Kim, Sang-Woon;Kim, Seung-Hwan
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.2
    • /
    • pp.21-28
    • /
    • 2010
  • This paper reports an experimental result on optimizing dissimilarity-based classification(DBC) by simultaneously using a dynamic time warping(DTW) and a multiple fusion strategy(MFS). DBC is a way of defining classifiers among classes; they are not based on the feature measurements of individual samples, but rather on a suitable dissimilarity measure among the samples. In DTW, the dissimilarity is measured in two steps: first, we adjust the object samples by finding the best warping path with a correlation coefficient-based DTW technique. We then compute the dissimilarity distance between the adjusted objects with conventional measures. In MFS, fusion strategies are repeatedly used in generating dissimilarity matrices as well as in designing classifiers: we first combine the dissimilarity matrices obtained with the DTW technique to a new matrix. After training some base classifiers in the new matrix, we again combine the results of the base classifiers. Our experimental results for well-known benchmark databases demonstrate that the proposed mechanism achieves further improved results in terms of classification accuracy compared with the previous approaches. From this consideration, the method could also be applied to other high-dimensional tasks, such as multimedia information retrieval.