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Damage Estimation of Bridge Structures
Using System Identification

= = o] = =
SEAFAUE o) 8 uFTRES E4E 4

2o B
Kim, Won - Jong
8 B=

Kang, Yong — J.

Abstract

A method to estimate damage of bridge structures is developed using system idetification approach.
Dynamic behavior of damaged structures is represented by a non-linear hysteretic moment model.
Structural properties can be evaluated through system identification. To incorporate variability of the
structural properties and uncertainties of structural response, damage is represented as random
quantities. Numerical example is shown for the bridge structure under different ground excitation.
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Introduction

Considerable damage has been observed in

many bridge structures during recent

earthquakes. Damage, however, is still deter-
mined -by intuition, experience and judgement
of engineers or as a function of simple
quantities, such as maximum deformation or
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change of stiffness. Considering that damage
is a non-linear function of the excitation, a
more systematic approach is essential in dam-
age estimation, which includes non-linear
characteristics of structure,

In this paper, a method for damage esti-
mation incorporating system identification is
suggested. The structural response is analyzed
by random vibration for earthquake excitations
and uncertainties related with structural prop-
erties are determined with system identifi-
cation, In particular, the extended Kalman
filtering algorithm is used to identify the
parameters related with structural properties.
For this purpose, a hysteretic model is devel-
oped to describe non-linear behavior of a mo-
ment-resisting frame. The optimal state of a
system can be obtained through filtering using
the measured data of excitation and response,
With these identified parametrs, a structure is
analyzed and damage is assessed at locations
where plastic hinges are expected to occur.
Damage is represented in terms of damage in-
dices of the hinges from which the overall
damage index of a bridge is determined.

In this paper, the proposed method is ap-
plied to an curved girder bridge as a numerical
example. The structural properties were deter-
mined from the identified parameters : degra-
dation of properties relative to those of the
included. The
calculated damage index is compared with the

undamaged structure is
observed damage. In particular, fragility
curves are obtained for different ground
intensies. The present method can be used
with a simple test on a bridge to give useful
information for decision to bridge maintenance
and rehabilitation of bridge structures.

Damage Model for Bridge Strctures
Discretization of Bridge for Damage Analysis

Bridges are usually constructed of flexural
members or as frame structures, Therefore,
moment-curvature  relations govern the
non-linear behavior of a structure. Hence, the
structures are modeled as moment-resisting
frames for damage assessment purpose. More-
over, damages may occur anywhere along a
member of the structure. However, for math-
ematical simplicity, damages may be idealized
as concentrated at the appropriate nodes. Ac-
cordingly, a discretized model for bridge dam-
age analysis can be represented from behavior
at nodes as shown in Fig. 1.

For damage analysis, it is assumed that plas-
tic hinges occur at each node under strong
exciations, whereas remaining parts of beam
elements are still elastic. As a result, damages
are calculated at locations where potential
hinges may occur. For the bridge shown in
Fig.1, three nodes are defined at each
different

beam-column joint, because

node

Fig. 1 Bridge Model for Damage Analysis
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hystereses may develop at those locations.
With this observation, damages can be
expressed at these nodes.

Models for Structural Damage

Damage of the reinforced concrete member
using moment-curvature relation may be
expressed as[10]

Pm Be

Dr=—-++
¢U My¢U

({dE (1

where, ¢y=maximum response curvature

under an earthquake ¢y =the ultimate
curvature capacity under monotonic loading :

M, =the calculated yield moment ; dE=the in-
cremental dissipated hysteretic energy ; fg is a

non-negative constant and a function of steel
ratio, axial force and the stirrup ratio given as

Be=[0.37n,40.36(k, —0.2)210.%w (2)

in which, k; is the normalized steel ratio and
given as —ptfy—'and 7, 1s the normalized axial
0.85f'c ’ ©

stress given by % In this paper, *w is de-

fined as the stirrip ratio ; N is the axial force :
pt is the ratio of tension steel to beam section
;b is the width of a beam ; d is the effective
depth of a beam : {, is the yield strength of
steel and f'c is the compressive strength of
concrete[2].

Damage of a reinforced member can be de-
scribed including structural capacity as,

where, D;=the damage index ratio for node-i
inside the structure ; D,=the structural dam-
age ; D,=the ultimate damage capacity with
D,=1.0 and 0p,=0.54.

To incorporate the uncertainties in the ran-
dom response, the maximum curvature and
hysteretic energy are represented as random
quantities, In such a case, the mean and vari-
ance of damage at each node can be calculated
as[2]

Sy Be
D= (1+0o2,) (2 + { dE
=(1+0¢ D)(¢U M0 {4 dE) (4)
Var[Di]=¢? , D? +¢21 Var [gy] +
U
( I\f;U)ZVar [[4 dE] (5)

Response Statistics

To calculate the damage of the nodes, the
mean and variance of the respective maximum
curvatures and dissipated hysteretic eneriges
are necessary. For this purpose, the followings
are required : a non-linear model for bridge
structure, a ground motion model, and a
method for a response analysis,

(1) Non-linear Model

The equation of motion to include non-linear
restoring force can be written as

MUK+ [CHKHFy b=~ M, (6)

where, [M] is a mass matrix ; [K] is a stiff-
ness matrix ; {J} is a direction vector : x, is the

ground acceleration, Non-linear force vector,
{FnL), is defined from the moments at nodes to

incorporate the damae model and given as,

{FnU =K1 XH(1.0—a) [T][Ky . (2} —{g})
(7
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where, [T] is a matrix transforming moments
in local coordinates to forces in global
coordinates, and [K,] is the element stiffness

matrix. Observe that a case with «=1.0 in Eq.
7 indicates the linear restoring force, Non-lin-
ear forces are calculated from the locations
where plastic hinges are expected to occur.
The curvature at each node, {4}, can be
expressed from a modal displacement vector,
and hysteretic component, z, can be de-
scribed[10]as

,— A= vip|d] 12177““12+7¢lzl“} (8)

where, «,8,y and n are constants related to the
hysteretic restoring force characteristics ; A, v
and # are parameters related to the degra-
dation and function of dissipated energy.

In this study, the state vector approach is
used to solve the equations of motion, and the
mode superposition is adopted to reduce the
number of variables. In such a case, the
equations of motion can be rewritten as

(Wh=[ — 26l {W} — [ )W} — (1—«)

[T N
[(41TIMI[4] kel ({zh—{g}) —{Tix,
(9)

where, {I'} is modal participation vector ; ¢ is
damping ratio ; w is the natural frequency of
the structure ; {W}, {W} and {W are modal dis-
placement, velocity and acceleration, respect-
ively.

(2) Modeling of Ground Motion

Earthquake motions are modeled as a zero
mean filtered Gaussian shot noise with a
Kanai-Tajimi spectrum. To model the
non-stationarity in groung motion, its intensity
is modulated by Ang and Amin type envelope
function[1].

(3) Random Vibration analysis

Random vibration analysis is performed by
solving following differential equation[3],

%S=GS+SGT+B (10)

where, S=E[y(t)(t)T]
1(t)=intensity fuction of the earth-
quake ground acceleration
And,

C‘lj—ty=GY+F (11)

in which,

y={x, X, w, W, 2T

F={0, %, 0, 0, 0} (12)

and acceleration of the ground, respectively
w and ware modal displacement and velocity
of a structure.

(4) Statistics of Maximum Curvature and
Dissipated Energy

The mean and variance of maximum curva-
ture may be obtained assuming nonstationary
peaks as Weibull distribution[6]. Mean
hysteritic energy is obtained solving Eq. 10
and c.o.v. of the hysteretic energy can be
approximated as 0.2 after 20 seconds, [8]

Global Damage Index

The global damage is also represented as the
mean and variance, since the global damage is
obtained from the mean and variance of the
damage index at each node as shown in Egs, 4
and 5. As a result, the event that the global
damage is greater than a damage level d is
combination of the cases where the damage in-
dices at nodes are greater than the level d and
represented as
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where, Dr is the global damage of the struc-
ture ; D; is the damage index at node i, and d

is a prescribed damage level,
The mean and variance of D¢ can not be

calculated directly from the summation of D
since the damage of each node is correlated.
Consequently, the damage of the global dam-
age is calculated in a probablistic concept, and
this probability will be converted to the mean
and variance of the global damage. Using Eq.
13, the probability of global damage exceeding
the damage level d is then expressed as

P(Dr>d)=P[U(D;>d)] (14)

The second order bounds of the probability
of exceeding a damage level d can be written
as

P(ED+E, max((P(Ei) — T max [{P(EE)

;0J0<P(Dr>d)
(15)
PO;>d)<EP(E)- T maxP(EE)
where,
P(E,)=P(D,;>d) (16)

in which i denotes the ith node where plastic
hinge is expected to occur and k is the num-
ber of nodes.

To calculate P(E;), the performance func-
tion is defined considering maximum curva-
ture and hysteretic energy. Using the damage
model defined in Eqgs. 1 and 3, the perform-
ance function can be written as

aX,+bY,—d
g(X)=——g5— (17)
where, a=—, b= Be Xi=¢wi, Y= dE;,
¢U y¢U '

D=D, and d is damage level.

Safety index for each node is calculated
using Eq.17 and the correlation factors are
also obtained. Assuming
the

parameters in log-normal distribution function

log-normal

dirstribution  for global damage,
can be determined using the probabilities
exceeding each damage level d and these me-

dian indicates global damage of the structure.
NUMERICAL EXAMPLE
In this study, Highway 5/14 overcrossing

[9] in the US.A.
example, This bridge is a typical overcrossing

is selected as numerical

with piers and curved girders. The structure
collapsed during 1971 San Fernando earth-
quake and the behavior of this bridge was
examined by 1 /30 scale model study.

Tabie 1. Description of Model and Real Structure

real structure model
Total Length 6361t 254.5inch
Radius of Curvature 2701t 108inch
Column Height 90ft 36inch
Deck Section 30ft x 7ft 8.5inx2.5in
Column Section 10ftx5ft 4inx2in
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Fig. 2 Description of Highway 5/ 14 Overcrossing
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The dimensions of the original and model
structure are shown in Table 1 and the de-
scription of original structure is shown in Fig.2
Structural properties of model structure are
through the
filtering[5] using measured time histories, and
The
results of measured and identified time histor-
ies of model structure is shown in Fig. 3. With

obtained extended Kalman

converted to the original structure.

the result of system identification on the
model structure, the properties of original
structure needed for damage estimation are

summarized in Table 2.

Table 2.
Overcrossing

Structural Properties of Highway 5/ 14

« | B Y ¢ ) &y Wy
0.05\ 6.09x10° | —2.03x10°| 0.10 | 1.15 | 0.8 |15.08
o}

-05

(a) Meosured Displacement

(b) Regenerated Displacement
from Identified Parameters

Fig. 3 Time Histories of Response

Damage is calculated from the expected
maximum curvature and dissipated energy at

the locations as shown in Fig.4, and the damage

at the corresponding nodes are summarized in
Table 3. Global damage of the structure is
calculated from combination of damage at the
nodes and the result is summarized in Table 4.
The coefficient of variance for the global dam-
age 1s found to be fairly constant and given as
approximately 0.62. For this uncertainty, 0.54
comes from the variability of the structural
properties and the rest can be attributed to
the randomness in the structural response.
This structure collapsed around 0.87g of
ground excitation. The main reason for the
collapse 1s considered to be damage concen-
tration to the top of center pier(node 2 in Fig,.
4).

Table3. Calculated Damage Index for Each Node(Mean)

node | 1/6g | 1/3g | 1/2g | 2/3g | 5/6h 1g
1 0.0107 | 0.0428 | 0.0963 | 0.1714 | 0.2680 | 0.3856
2 0.0361 | 0.1446 | 0.3257 | 0.5794 | 0.9059 | 1.3032
3 0.0090 | 0.0361 | 0.0812 | 0.1445 | 0.2259 | 0.3249
4 0.0050 | 0.0200 | 0.0449 | 0.0800 | 0.1250 | 0.1798
5 0.0074 [ 0.0298 | 0.0671 | 0.1193 | 0.1866 | 0.2684
|
node4 node3 node5|
o 2 3 a
node 1 node 2
z
b
(&) Elevation

node 4

Y.

¢ (b) Plan

Fig. 4 Scaled Model of Highway 5/ 14 Overcrossing
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In accordance with this observation, the

structure is considered to collapse at
approximately gobal damage index of (0.8. The
probability of exceeding different damage level
d is shown in Fig. 5. From this cumulative

probability, global damage of this structure is

Table 4. Global Damage Statistics under Different
Intensities

1/6g|1/3g|1/2g|2/3g|5.68 | 1g
Global Damage {0.0307| 0.122 | 0.277 | 0.493 | 0.770 | 1.11
COoVv 0.620 | 0.620 | 0.620 | 0.620 | 0.621 | 0.621
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Fig. 5 Probability of Exceeding a Damage Level for Different
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Fig. 7 Fragility Curve

calculated and the result is also shown in Fig,
6. The probability of collapse is assumed as
the probability exceeding damage level 0.8
based on the collapse of 5/14 Highway
Overcrossing and the damaged building
structures in Park, Ang and Wen.[2]

CONCLUSION

In this study, a method for damage estimation
of bridge structure is developed using the
identified structural properties, Numerical
example indicates that the bridge structure
collapsed at approximately damage index of
0.8. In particular, the example structure is
considered to be collapsed because of damage
concentration to the specific location. To in-
crease resistance to repeated loadings, the
structure has to be strengthened to avoid such
damage concentration. This proposed method
can be used with a simple test on a bridge to
give useful information for decision related to
maintenance and rehabilitation of bridge
structures.
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