• Title/Summary/Keyword: 동적모델링

Search Result 1,121, Processing Time 0.025 seconds

Reconstruction Of Photo-Realistic 3D Assets For Actual Objects Combining Photogrammetry And Computer Graphics (사진측량과 컴퓨터 그래픽의 결합을 통한 실제 물체의 사실적인 3D 에셋 재건)

  • Yan, Yong
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.1
    • /
    • pp.147-161
    • /
    • 2021
  • Through photogrammetry techniques, what current researches can achieve at present is rough 3D mesh and color map of objects, rather than usable photo-realistic 3D assets. This research aims to propose a new method to create photo-realistic 3D assets that can be used in the field of visualization applications. The new method combines photogrammetry with computer graphics modeling. Through the description of the production process of three objects in the real world - "Bullet Box", "Gun" and "Metal Beverage Bottle," it introduces in details the concept, functions, operating skills and software packages used in the steps including the photograph object, white balance, reconstruction, cleanup reconstruction, retopology, UV unwrapping, projection, texture baking, De-Lighting and Create Material Maps. In order to increase the flexibility of the method, alternatives to the software packages are also recommended for each step. In this research, 3D assets are produced that are accurate in shape, correct in color, easy to render and can be physically interacted with dynamic lighting in texture. The new method can obtain more realistic visual effects at a faster speed. It does not require large-scale teams, expensive equipment and software packages, therefore it is suitable for small studios and independent artists and educational institutions.

Derivation of Dynamic Characteristic Values for Multi-degree-of-freedom Frame Structures based on Frequency Response Function(FRF) (주파수응답함수 기반 다자유도 골조 구조물의 동특성치 도출 및 구조모델링 적용 )

  • So-Yeon Kim;Min-Young Kim;Seung-Jae Lee;Kyoung-Kyu Choi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.4
    • /
    • pp.1-10
    • /
    • 2023
  • In the seismic design of structures, seismic forces are calculated based on structural models and analysis. In order to accurately address the dynamic characteristics of the actual structure in the structural model, calibration based on actual measurements is required. In this study, a 4-story frame test specimen was manufactured to simulate frame building, accelerometers were attached at each floor, and 1-axis shaking table test was performed. The natural period of the specimen was similar to that of the actual 4 story frame building, and the columns were designed to behave with double-curvature having the infinite stiffness of the horizontal members. To investigate the effects seismic waves characteristics, historical and artificial excitations with various frequencies and acceleration magnitudes were applied. The natural frequencies, damping ratios, and mode shapes were obtained using frequency response functions obtained from dynamic response signals, and the mode vector deviations according to the input seismic waves were verified using the Mode assurance criterion (MAC). In addition, the damping ratios obtained from the vibration tests were applied to the structural model, and the method with refined dynamic characteristics was validated by comparing the analysis results with the experimental data.

Development of an IMU-based Wearable Ankle Device for Military Motion Recognition (군사 동작 인식을 위한 IMU 기반 발목형 웨어러블 디바이스 개발)

  • Byeongjun Jang;Jeonghoun Cho;Dohyeon Kim;Kyeong-Won Park
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.23-34
    • /
    • 2023
  • Wearable technology for military applications has received considerable attention as a means of personal status check and monitoring. Among many, an implementation to recognize specific motion states of a human is promising in that allows active management of troops by immediately collecting the operational status and movement status of individual soldiers. In this study, as an extension of military wearable application research, a new ankle wearable device is proposed that can glean the information of a soldier on the battlefield on which action he/she takes in which environment. Presuming a virtual situation, the soldier's upper limbs are easily exposed to uncertainties about circumstances. Therefore, a sensing module is attached to the ankle of the soldier that may always interact with the ground. The obtained data comprises 3-axis accelerations and 3-axis rotational velocities, which cannot be interpreted by hand-made algorithms. In this study, to discern the behavioral characteristics of a human using these dynamic data, a data-driven model is introduced; four features extracted from sliced data (minimum, maximum, mean, and standard deviation) are utilized as an input of the model to learn and classify eight primary military movements (Sitting, Standing, Walking, Running, Ascending, Descending, Low Crawl, and High Crawl). As a result, the proposed device could recognize a movement status of a solider with 95.16% accuracy in an arbitrary test situation. This research is meaningful since an effective way of motion recognition has been introduced that can be furtherly extended to various military applications by incorporating wearable technology and artificial intelligence.

Analysis of Research Trends in Deep Learning-Based Video Captioning (딥러닝 기반 비디오 캡셔닝의 연구동향 분석)

  • Lyu Zhi;Eunju Lee;Youngsoo Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.13 no.1
    • /
    • pp.35-49
    • /
    • 2024
  • Video captioning technology, as a significant outcome of the integration between computer vision and natural language processing, has emerged as a key research direction in the field of artificial intelligence. This technology aims to achieve automatic understanding and language expression of video content, enabling computers to transform visual information in videos into textual form. This paper provides an initial analysis of the research trends in deep learning-based video captioning and categorizes them into four main groups: CNN-RNN-based Model, RNN-RNN-based Model, Multimodal-based Model, and Transformer-based Model, and explain the concept of each video captioning model. The features, pros and cons were discussed. This paper lists commonly used datasets and performance evaluation methods in the video captioning field. The dataset encompasses diverse domains and scenarios, offering extensive resources for the training and validation of video captioning models. The model performance evaluation method mentions major evaluation indicators and provides practical references for researchers to evaluate model performance from various angles. Finally, as future research tasks for video captioning, there are major challenges that need to be continuously improved, such as maintaining temporal consistency and accurate description of dynamic scenes, which increase the complexity in real-world applications, and new tasks that need to be studied are presented such as temporal relationship modeling and multimodal data integration.

The Contact and Parallel Analysis of Smoothed Particle Hydrodynamics (SPH) Using Polyhedral Domain Decomposition (다면체영역분할을 이용한 SPH의 충돌 및 병렬해석)

  • Moonho Tak
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.4
    • /
    • pp.21-28
    • /
    • 2024
  • In this study, a polyhedral domain decomposition method for Smoothed Particle Hydrodynamics (SPH) analysis is introduced. SPH which is one of meshless methods is a numerical analysis method for fluid flow simulation. It can be useful for analyzing fluidic soil or fluid-structure interaction problems. SPH is a particle-based method, where increased particle count generally improves accuracy but diminishes numerical efficiency. To enhance numerical efficiency, parallel processing algorithms are commonly employed with the Cartesian coordinate-based domain decomposition method. However, for parallel analysis of complex geometric shapes or fluidic problems under dynamic boundary conditions, the Cartesian coordinate-based domain decomposition method may not be suitable. The introduced polyhedral domain decomposition technique offers advantages in enhancing parallel efficiency in such problems. It allows partitioning into various forms of 3D polyhedral elements to better fit the problem. Physical properties of SPH particles are calculated using information from neighboring particles within the smoothing length. Methods for sharing particle information physically separable at partitioning and sharing information at cross-points where parallel efficiency might diminish are presented. Through numerical analysis examples, the proposed method's parallel efficiency approached 95% for up to 12 cores. However, as the number of cores is increased, parallel efficiency is decreased due to increased information sharing among cores.

Performance Evaluation of a Dynamic Bandwidth Allocation Algorithm with providing the Fairness among Terminals for Ethernet PON Systems (단말에 대한 공정성을 고려한 이더넷 PON 시스템의 동적대역할당방법의 성능분석)

  • Park Ji-won;Yoon Chong-ho;Song Jae-yeon;Lim Se-youn;Kim Jin-hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.11B
    • /
    • pp.980-990
    • /
    • 2004
  • In this paper, we propose the dynamic bandwidth allocation algorithm for the IEEE802.3ah Ethernet Passive Optical Network(EPON) system to provide the fairness among terminals, and evaluate the delay-throughput performance by simulation. For the conventional EPON systems, an Optical Line Termination (OLT) schedules the upstream bandwidth for each Optical Network Unit (ONU), based on its buffer state. This scheme can provide a fair bandwidth allocation for each ONU. However, it has a critical problem that it does not guarantee the fair bandwidth among terminals which are connected to ONUs. For an example, we assume that the traffic from a greedy terminal increases at a time. Then, the buffer state of its ONU is instantly reported to the OLT, and finally the OW can get more bandwidth. As a result, the less bandwidth is allocated to the other ONUs, and thus the transfer delay of terminals connected to the ONUs gets inevitably increased. Noting that this unfairness problem exists in the conventional EPON systems, we propose a fair bandwidth allocation scheme by OLT with considering the buffer state of ONU as welt as the number of terminals connected it. For the performance evaluation, we develop the EPON simulation model with SIMULA simulation language. From the result of the throughput-delay performance and the dynamics of buffer state along time for each terminal and ONU, respectively, one can see that the proposed scheme can provide the fairness among not ONUs but terminals. Finally, it is worthwhile to note that the proposed scheme for the public EPON systems might be an attractive solution for providing the fairness among subscriber terminals.

Seismic response characteristics of the hypothetical subsea tunnel in the fault zone with various material properties (다양한 물성의 단층대를 통과하는 가상해저터널의 지진 시 응답 특성)

  • Jang, Dong In;Kwak, Chang-Won;Park, Inn-Joon;Kim, Chang-Yong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1061-1071
    • /
    • 2018
  • A subsea tunnel, being a super-sized underground structure must ensure safety at the time of earthquake, as well as at ordinary times. At the time of earthquake, in particular, of a subsea tunnel, a variety of response behaviors are induced owing to relative rigidity to the surrounding ground, or difference of displacement, so that the behavior characteristics can be hardly anticipated. The investigation aims to understand the behavior characteristics switched by earthquake of an imaginary subsea tunnel which passes through a fault zone having different physical properties from those of the surrounding ground. In order to achieve the aim, dynamic response behaviors of a subsea tunnel which passes through a fault zone were observed by means of indoor experiments. For the sake of improved earthquake resistance, a shape of subsea tunnel to which flexible segments have been applied was considered. Afterward, it is believed that a D/B can be established through 3-dimensional earthquake resistance interpretation of various grounds, on the basis of verified results from the experiments and interpretations under various conditions. The present investigation performed 1 g shaking table test in order to verify the result of 3-dimensional earthquake resistance interpretation. A model considering the similitude (1:100) of a scale-down model test was manufactured, and tests for three (3) Cases were carried out. Incident seismic wave was introduced by artificial seismic wave having both long-period and short-period earthquake properties in the horizontal direction which is rectangular to the processing direction of the tunnel, so that a fault zone was modeled. For numerical analysis, elastic modulus of the fault zone was assumed 1/5 value of the modulus of individual grounds surround the tunnel, in order to simulate a fault zone. Resultantly, reduced acceleration was confirmed with increase of physical properties of the fault zone, and the result from the shaking table test showed the same tendency as the result from 3-dimensional interpretation.

An Analysis of Soil Pressure Gauge Result from KHC Test Road (시험도로 토압계 계측결과 분석)

  • In Byeong-Eock;Kim Ji-Won;Kim Kyong-Ha;Lee Kwang-Ho
    • International Journal of Highway Engineering
    • /
    • v.8 no.3 s.29
    • /
    • pp.129-141
    • /
    • 2006
  • The vertical soil pressure developed in the granular layer of asphalt pavement system is influenced by various factors, including the wheel load magnitude, the loading speed, and asphalt pavement temperature. This research observed the distribution of vertical soil pressure in pavement supporting layer by investigating measured data from soil pressure gage in the KHC Test Road. The existing specification of subbase and subgrade compaction was also evaluated with measured vertical pressure. The finite element analysis was conducted to verify the accuracy of results with measured data because it can maximize research capacity without significant field test. The test data was collected from A5, A7, A14, and A15 test sections at August, September, and November 2004 and August 2005. Those test sections and test data were selected because they had best quality. The size of influence area was evaluated and the vertical pressure variation was investigated with respect to load level, load speed, and pavement temperature. The lower speed, higher load level, and higher pavement temperature increased the vertical pressure and reduced the area of influence. The finite element result showed the similar trend of vertical pressure variation in comparison with measured data. The specification of compaction quality for subbase and subgrade is higher than the level of vertical pressure measured with truck load so that it should be lurker investigated.

  • PDF

Development of Intelligent ATP System Using Genetic Algorithm (유전 알고리듬을 적용한 지능형 ATP 시스템 개발)

  • Kim, Tai-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.131-145
    • /
    • 2010
  • The framework for making a coordinated decision for large-scale facilities has become an important issue in supply chain(SC) management research. The competitive business environment requires companies to continuously search for the ways to achieve high efficiency and lower operational costs. In the areas of production/distribution planning, many researchers and practitioners have developedand evaluated the deterministic models to coordinate important and interrelated logistic decisions such as capacity management, inventory allocation, and vehicle routing. They initially have investigated the various process of SC separately and later become more interested in such problems encompassing the whole SC system. The accurate quotation of ATP(Available-To-Promise) plays a very important role in enhancing customer satisfaction and fill rate maximization. The complexity for intelligent manufacturing system, which includes all the linkages among procurement, production, and distribution, makes the accurate quotation of ATP be a quite difficult job. In addition to, many researchers assumed ATP model with integer time. However, in industry practices, integer times are very rare and the model developed using integer times is therefore approximating the real system. Various alternative models for an ATP system with time lags have been developed and evaluated. In most cases, these models have assumed that the time lags are integer multiples of a unit time grid. However, integer time lags are very rare in practices, and therefore models developed using integer time lags only approximate real systems. The differences occurring by this approximation frequently result in significant accuracy degradations. To introduce the ATP model with time lags, we first introduce the dynamic production function. Hackman and Leachman's dynamic production function in initiated research directly related to the topic of this paper. They propose a modeling framework for a system with non-integer time lags and show how to apply the framework to a variety of systems including continues time series, manufacturing resource planning and critical path method. Their formulation requires no additional variables or constraints and is capable of representing real world systems more accurately. Previously, to cope with non-integer time lags, they usually model a concerned system either by rounding lags to the nearest integers or by subdividing the time grid to make the lags become integer multiples of the grid. But each approach has a critical weakness: the first approach underestimates, potentially leading to infeasibilities or overestimates lead times, potentially resulting in excessive work-inprocesses. The second approach drastically inflates the problem size. We consider an optimized ATP system with non-integer time lag in supply chain management. We focus on a worldwide headquarter, distribution centers, and manufacturing facilities are globally networked. We develop a mixed integer programming(MIP) model for ATP process, which has the definition of required data flow. The illustrative ATP module shows the proposed system is largely affected inSCM. The system we are concerned is composed of a multiple production facility with multiple products, multiple distribution centers and multiple customers. For the system, we consider an ATP scheduling and capacity allocationproblem. In this study, we proposed the model for the ATP system in SCM using the dynamic production function considering the non-integer time lags. The model is developed under the framework suitable for the non-integer lags and, therefore, is more accurate than the models we usually encounter. We developed intelligent ATP System for this model using genetic algorithm. We focus on a capacitated production planning and capacity allocation problem, develop a mixed integer programming model, and propose an efficient heuristic procedure using an evolutionary system to solve it efficiently. This method makes it possible for the population to reach the approximate solution easily. Moreover, we designed and utilized a representation scheme that allows the proposed models to represent real variables. The proposed regeneration procedures, which evaluate each infeasible chromosome, makes the solutions converge to the optimum quickly.

Analyzing Topic Trends and the Relationship between Changes in Public Opinion and Stock Price based on Sentiment of Discourse in Different Industry Fields using Comments of Naver News (네이버 뉴스 댓글을 이용한 산업 분야별 담론의 감성에 기반한 주제 트렌드 및 여론의 변화와 주가 흐름의 연관성 분석)

  • Oh, Chanhee;Kim, Kyuli;Zhu, Yongjun
    • Journal of the Korean Society for information Management
    • /
    • v.39 no.1
    • /
    • pp.257-280
    • /
    • 2022
  • In this study, we analyzed comments on news articles of representative companies of the three industries (i.e., semiconductor, secondary battery, and bio industries) that had been listed as national strategic technology projects of South Korea to identify public opinions towards them. In addition, we analyzed the relationship between changes in public opinion and stock price. 'Samsung Electronics' and 'SK Hynix' in the semiconductor industry, 'Samsung SDI' and 'LG Chem' in the secondary battery industry, and 'Samsung Biologics' and 'Celltrion' in the bio-industry were selected as the representative companies and 47,452 comments of news articles about the companies that had been published from January 1, 2020, to December 31, 2020, were collected from Naver News. The comments were grouped into positive, neutral, and negative emotions, and the dynamic topics of comments over time in each group were analyzed to identify the trends of public opinion in each industry. As a result, in the case of the semiconductor industry, investment, COVID-19 related issues, trust in large companies such as Samsung Electronics, and mention of the damage caused by changes in government policy were the topics. In the case of secondary battery industries, references to investment, battery, and corporate issues were the topics. In the case of bio-industries, references to investment, COVID-19 related issues, and corporate issues were the topics. Next, to understand whether the sentiment of the comments is related to the actual stock price, for each company, the changes in the stock price and the sentiment values of the comments were compared and analyzed using visual analytics. As a result, we found a clear relationship between the changes in the sentiment value of public opinion and the stock price through the similar patterns shown in the change graphs. This study analyzed comments on news articles that are highly related to stock price, identified changes in public opinion trends in the COVID-19 era, and provided objective feedback to government agencies' policymaking.