• Title/Summary/Keyword: 동적계측

Search Result 307, Processing Time 0.024 seconds

Comparison of Dynamic Characteristics of a Wind and Photovoltaic Hybrid Light Pole Structure with 2-bladed and 3-bladed Vertical Axis Turbine Rotors Using Vibration Measurement under Normal Operation Conditions (2엽 및 3엽 수직축 풍력-태양광 하이브리드 가로등의 발전 중 진동계측을 통한 동적 특성 비교)

  • Yi, Jin-Hak;Park, Sangmin;Yim, Sungyul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.118-125
    • /
    • 2019
  • In this study, the vibration characteristics and the resonance phenomena of a wind-solar hybrid light pole structure are compared with respect to the wind turbine type through the dynamic response measurement. Two different turbines are considered including 2-bladed and 3-bladed vertical axis wind turbine rotors. The resonance phenomenon that can occur in hybrid light pole structure is analyzed by comparing the dynamic characteristics of the structure and the excitation force under operational conditions. Displacement responses are also estimated using the acceleration measurement data by use of recently proposed method, and it is observed that the amplitude of dynamic displacement responses are in the range of 4-6 cm under the resonance in the case of 2-bladed turbine and those are limited under 2 mm in the case of 3-bladed turbine because there is no resonance.

Verification of bridges Design criteria for Continuous PSC Box Bridge of High Speed Railway Using Field Test (고속철도 연속 PSC Box 교량에 적용한 설계기준의 현장계측에 의한 검증)

  • Kang, Kee Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.1
    • /
    • pp.53-58
    • /
    • 2006
  • The aim of this paper is to verify the dynamics stability of the continuous PSC Box bridges on the high-speed Kyoung-bu railway when a high-sped train runs through it. An experimental study was carried out to investigate the dynamic behaviors of the PSC Box railway bridge, which had ben designed based on dynamic design criteria. As a result, it was determined that PSC Box railway bridges possess enough dynamics stability for use by high-speed trains. According to the result of a field test (dynamics measuring analysis) that was conducted, an application of the natural frequency of train speed and the adjustment of the bridge's span length will allow one to come up with a more economical and suitable bridge design. Furthermore, it was found that the continuous control of the bridge's dynamic behavior and the bridge's maintena nce require the recording of data. The results of this study are very important in evaluating the structural stability of high-speed line bridges.

Estimation of Shear Wave Velocity of Rockfill Zone by Dynamic Analysis using Micro-earthquake Records (미소지진 계측기록을 활용한 동적응답해석에 의한 댐 사력존 전단파속도 산정)

  • Ha, Ik Soo;Lee, Soo Gwun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.141-152
    • /
    • 2015
  • The objective of this study is to estimate shear wave velocity of rockfill materials by making practical use of the micro-earthquake records which are ordinarily obtained at a domestic rockfill dam and to verify its applicability. Micro-earthquake records were obtained at the site of Heongseong dam and Soyanggang dam, which are the existing multi-purpose dams in Korea. In the previous study, the fundamental periods of each dam were already evaluated by analyzing the response spectrum of the observed records. In this study, numerical analyses varying shear moduli of rockfill zone were carried out using the acceleration histories measured at the abutment as input ground motions. From comparison between the fundamental periods calculated by numerical analyses and measured records, the shear wave velocities with depth were estimated. It is found that the effect of different earthquake events on shear wave velocity estimation for the target dam materials is negligible and the shear wave velocity can be consistently evaluated. Furthermore, comparing the shear wave velocity with the previous researchers' empirical relationships and field test results, applicability of suggested method is verified. Therefore, in case that it is impossible to conduct field tests and estimation is preliminary, the suggested method can be practically used.

지반-구조물 상호작용을 고려한 축대칭 원전 구조물의 비선형 지진해석

  • 윤정방;최준성;김재민
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05d
    • /
    • pp.333-338
    • /
    • 1996
  • 강진에 의한 원전구조물의 동적해석시 지반의 비선형특성은 반드시 고려해야 할 사항이다. 지반의 비선형특성은 지반-구조계의 동적응답을 구하는 과정에서 가장 중요한 요소중의 하나며 이를 고려한 비선형 지진해석은 일반적으로 매우 복잡하고 정해를 구하기가 매우 어려운 문제다. 본 연구에서는 비선형 해법으로 널리 사용되고 있는 등가선형화방법을 사용하여 계측결과가 있는 TEPSCO 비선형 지진문제를 해석하였으며 이 방법의 정확도와 적용성을 분석하였다. 아울러 축대칭기법을 사용하여 비선형지진해석을 수행할때의 문제점에 관해서도 검토하였다.

  • PDF

연령구성에 기인하는 인구증가의 관성

  • Rhee, Hong Joon
    • Journal of the Korean Statistical Society
    • /
    • v.6 no.2
    • /
    • pp.155-165
    • /
    • 1977
  • 현 시점에서의 인구의 성별/연령별 구성은 과거의 출산, 사망에 의한 인구진행과정(demographic process)의 잔류효과라고 볼 수 있다. 한편 현재의 인구의 성별/연령별 구성은 장래의 인구증가에 잠재적인 영향력을 미치게 된다. 예를 들면 인구의 대부분이 45세 이상으로 구성되어 있다면 출산률은 낮고 사망률은 높아서 인구증가는 더디다. 즉 인구의 연령별 구성은 인구증가를 좌우하는 하나의 동적인 요인으로 볼 수 있다. 연령구성이 한 결과인 동시에 하나의 요인이기도 하다는, 이러한 이중적인 성격은 서로 얽히고 복잡한 것이다. 이 논문에서는 둘째 관점, 즉 연령구성을 하나의 동적요인으로 보고, 그것이 인구증가에 미치는 잠재력(potentail) 또는 관성(momentum)에 관해서 고찰하고 최근(1970, 1975)의 한국 센서스 결과에 대해서 이를 정량적으로 계측하고자 한다.

  • PDF

Dynamic Frictional Behavior of Saw-cut Rock Joints Through Shaking Table Test (진동대 시험에 의한 편평한 암석 절리면의 동적 마찰거동 특성)

  • Park Byung-Ki;Jeon Seokwon
    • Tunnel and Underground Space
    • /
    • v.16 no.1 s.60
    • /
    • pp.58-72
    • /
    • 2006
  • In recent years, not only the occurrences but the magnitude of earthquakes in Korea are on an increasing trend and other sources of dynamic events including large-scale construction, operation of hi띤-speed railway and explosives blasting have been increasing. Besides, the probability of exposure fir rock joints to free faces gets higher as the scale of rock mass structures becomes larger. For that reason, the frictional behavior of rock joints under dynamic conditions needs to be investigated. In this study, a shaking table test system was set up and a series of dynamic test was carried out to examine the dynamic frictional behavior of rock joints. In addition, a computer program was developed, which calculated the acceleration and deformation of the sliding block theoretically based on Newmark sliding block procedure. The static friction angle was back-calculated by measuring yield acceleration at the onset of slide. The dynamic friction angle was estimated by closely approximating the experimental results to the program-simulated responses. As a result of dynamic testing, the static friction angle at the onset of slide as well as the dynamic friction angle during sliding were estimated to be significantly lower than tilt angle. The difference between the tilt angle and the static friction angle was $4.5\~8.2^{\circ}$ and the difference between the tilt angle and the dynamic friction angle was $2.0\~7.5^{\circ}$. The decreasing trend was influenced by the magnitude of the base acceleration and inclination angle. A DEM program was used to simulate the shaking table test and the result well simulated the experimental behavior. Friction angles obtained by shaking table test were significantly lower than basic friction angle by direct shear test.

Identification of Substructure Model using Measured Response Data (계측 거동 데이터를 이용한 부분구조 모델의 식별)

  • Oh, Seong-Ho;Lee, Sang-Min;Shin, Soobong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.137-145
    • /
    • 2004
  • The paper provides a methodology of identifying a substructure model when sectional and material properties of the structure are not the a priori information. In defining a substructure model, it is required that structural responses be consistent with the actual behavior of the part of the structure. Substructure model is identified by estimating boundary spring constants and stiffness properties of the substructure. Static and modal system identification methods have been applied using responses measured at limited locations within the substructure. Simulation studies for static and dynamic responses have been carried. The results and associated problems are discussed in the paper. The procedure has been also applied to an actual multi-span plate-girder Gerber-type bridge with dynamic responses obtained from a moving truck test and construction blasting vibrations.

Implementation of Intelligent Measurement System of InterModulation Distorted RF Signals (지능형 누설왜곡전파신호 측정시스템 개발)

  • Kim, Dong-hyeon;Seo, Na-Hyeon;Park, Ki-Won;Rhee, Young-Chul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.2
    • /
    • pp.144-149
    • /
    • 2017
  • In this paper, we developed an intelligent and wideband RF-receiver module to represent a high dynamic range and good linearity characteristics up to 650MHz-2700MHz frequency band. and implemented an intelligent digital-RF- distorted signal measuring system for the RF distortion (intermodulation) signals. Broadband RF-receive module was designed to represent the optimized linear parameters of the receiver to meet the low noise and wide dynamic range. The designed intelligent digital-distortion(intermodulation) signal measument system measured by applying the 1MHz IF of third intermodulation signal of DUT and Measured data was recorded by program on the PC monitor with GUI interface. By variable up to 650MHz-2700MHz measured data showed up to -127.8dBc to -138dBc of the distortion (intermodulation) signal. And developed intelligent digital- distortion signal measurement system can be used to measure intermodulation distortion signal of wireless system widely.

Damage estimation for structural safety evaluation using dynamic displace measurement (구조안전도 평가를 위한 동적변위 기반 손상도 추정 기법 개발)

  • Shin, Yoon-Soo;Kim, Junhee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.87-94
    • /
    • 2019
  • Recently, the advance of accurate dynamic displacement measurement devices, such as GPS, computer vision, and optic laser sensor, has enhanced the structural monitoring technology. In this study, the dynamic displacement data was used to verify the applicability of the structural physical parameter estimation method through subspace system identification. The subspace system identification theory for estimating state-space model from measured data and physics-based interpretation for deriving the physical parameter of the estimated system are presented. Three-degree-freedom steel structures were fabricated for the experimental verification of the theory in this study. Laser displacement sensor and accelerometer were used to measure the displacement data of each floor and the acceleration data of the shaking table. Discrete state-space model generated from measured data was verified for precision. The discrete state-space model generated from the measured data extracted the floor stiffness of the building after accuracy verification. In addition, based on the story stiffness extracted from the state space model, five column stiffening and damage samples were set up to extract the change rate of story stiffness for each sample. As a result, in case of reinforcement and damage under the same condition, the stiffness change showed a high matching rate.

Determining the Appropriate Installation Angle of Skewed Sensor to Measure Vehicle Wandering (차량 원더링 계측을 위한 사선센서 적정 설치각도 결정)

  • Oh, Ju-Sam;Jang, Kyung-Chan;Kim, Min-Sung;Jang, Jin-Hwan
    • International Journal of Highway Engineering
    • /
    • v.10 no.3
    • /
    • pp.79-86
    • /
    • 2008
  • This paper proposed the appropriate installation angle of skewed sensors for measuring vehicle wandering data, which are collected to figure out the location of dynamic weight of a moving vehicle on roadways. We developed a device using tape-switch sensors and a computer program and collected vehicle wandering data with the device and probe vehicles. As a result, the steeper the skewed sensor was installed, the lower the error was shown. However, we could not collect proper data when a skewed sensor was set up higher than $30^{\circ}$ due to tandem axle. Therefore, this study suggested the appropriate angle of skewed sensors as a degree of $20^{\circ}$ to $25^{\circ}$ for gathering wandering data.

  • PDF