• Title/Summary/Keyword: 동잡음 검출

Search Result 42, Processing Time 0.032 seconds

Digital Video Watermarking Using Frame Division And 3D Wavelet Transform (프레임 분할과 3D 웨이블릿 변환을 이용한 비디오 워터마킹)

  • Kim, Kwang-Il;Cui, Jizhe;Kim, Jong-Weon;Choi, Jong-Uk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.3
    • /
    • pp.155-162
    • /
    • 2008
  • In this paper we proposed a video watermarking algorithm based on a three dimension discrete wavelet transform (3D DWT) and direct spread spectrum (DSS). In the proposed method, the information watermark is embedded into followed frames, after sync watermark is embedded into the first frame. Input frames are divided into sub frames which are located odd row and even row. The sub frames are arranged as 3D frames, and transformed into 3D wavelet domain. In this domain the watermark is embedded using DSS. Existing video watermarking using 3D DWT is non-blind method but, proposed algorithm uses blind method. The experimental results show that the proposed algorithm is robust against frame cropping, noise addition, compression, etc. acquiring BER of 10% or below and sustains level of 40dB or above on the average.

Shielding Design Optimization of the HANARO Cold Neutron Triple-Axis Spectrometer and Radiation Dose Measurement (냉중성자 삼축분광장치의 차폐능 최적화 설계 및 선량 측정)

  • Ryu, Ji Myung;Hong, Kwang Pyo;Park, J.M. Sungil;Choi, Young Hyeon;Lee, Kye Hong
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.1
    • /
    • pp.21-29
    • /
    • 2014
  • A new cold neutron triple-axis spectrometer (Cold-TAS) was recently constructed at the 30 MWth research reactor, HANARO. The spectrometer, which is composed of neutron optical components and radiation shield, required a redesign of the segmented monochromator shield due to the lack of adequate support of its weight. To shed some weight, lowering the height of the segmented shield was suggested while adding more radiation shield to the top cover of the monochromator chamber. To investigate the radiological effect of such change, we performed MCNPX simulations of a few different configurations of the Cold-TAS monochromator shield and obtained neutron and photon intensities at 5 reference points just outside the shield. Reducing the 35% of the height of the segmented shield and locating lead 10 cm from the bottom of the top cover made of polyethylene was shown to perform just as well as the original configuration as radiation shield excepting gamma flux at two points. Using gamma map by MCNPX, it was checked that is distribution of gamma. Increased flux had direction to the top and it had longer distance from top of segmented shield. However, because of reducing the 35% of the height, height of dissipated gamma was lower than original geometry. Reducing the 35% of the height of the segmented shield and locating lead 10cm from the bottom of the top cover was selected. After changing geometry, radiation dose was measured by TLD for confirming tester's safety at any condition. Neutron(0.21 ${\mu}Svhr^{-1}$) and gamma(3.69 ${\mu}Svhr^{-1}$) radiation dose were satisfied standard(6.25 ${\mu}Svhr^{-1}$).