• Title/Summary/Keyword: 동위원소 연대측정

Search Result 59, Processing Time 0.032 seconds

Characteristics of a Turbidite Sediment from the Southern Margin of the Okinawa Trough, Japan (오끼나와해곡 남쪽해역의 저탁류 퇴적물의 특성)

  • 현상민
    • 한국해양학회지
    • /
    • v.30 no.2
    • /
    • pp.69-76
    • /
    • 1995
  • A turbidite core sediment (RN88-PC5) from 2051 m on the deep-sea floor at the southern margin of Okinawa Trough was examined. Sedimentological characteristics were quite different between sandy sediments and hemipelagic sediments and hemipelagic sediments in terms of benthic foraminiferal assemblage, grain-size and chemical composition. All turbidite sandy sediments were clearly transported from shallow area as they include typical coral reef dwelling benthic foraminifera which were not found in the background hemipelagic sediments. These layers also suggest that the sediments were transported by turbidity-related currents and implies that sedimentological mechanisms were different between sandy sediments and hemipelagic sediments. The result of the /SUP 14/ C age dating and the stable oxygen isotopic fluctuation of planktonic foraminifera show a gradual warming trend of the surface water from about 10 Ka to present. Also Termination lb as well as two fresh water input events were recognized at ca2 and 7 ka.

  • PDF

Rb-Sr Whole-rock Isochron Age and Petrology of the Mt. Geumjeong Granite, Busan (부산 금정산화강암체의 암석학 및 Rb-Sr 전암 등시선 연대)

  • Yun Sung-Hyo;Koh Jeong-Seon;Park Kwang-Sun;Ahn Hyo-Chan;Kim Young-Il;Yoo Sung-Hyeon;Lee Dong-Han;Yun Gi-Young
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.61-72
    • /
    • 2005
  • The granitoids in the Mt. Geumjeong, Busan can be divided into granodiorite, hornblende granite, adamellite, tonalite, biotite granite and micrographic granite. The geochemical characteristics of the Mt. Geumjeong granites indicate that they were crystallized from a calc-alkaline series and that they belong to Ⅰ-type granitic rocks which evolved from granodioritic magma into hornblende granite, adamellite, biotitie granite, and finally micrographic granite through fractional crystallization of plagioclase. The crystallization pressures and temperatures of the minimum melt compositions of the granitic rocks were estimated to about 1∼5 kbar and 720∼700℃. The trace element composition and REE patterns, characterized by a high LILE/HFSE ratio and enrichments in LREE, indicate typical continental margin arc calc-alkaline rocks produced in the subduction environment. The Rb-Sr isotopic data for the Mt. Geumjeong granites define a well-defined isochron yielding as age of 69.6±1.9 Ma with an initial Sr isotopic ratio of 0.70503.

Late Holocene Paleoceanography from Core Sediments in the Admiralty Bay and Maxwell Bay, King George Island, Antarctica (남극 킹 죠지 섬 에드미럴티 만과 멕스웰 만 시추 퇴적물의 홀로세 후기 고해양환 경 연구)

  • 박병권;윤호일
    • 한국해양학회지
    • /
    • v.30 no.4
    • /
    • pp.302-319
    • /
    • 1995
  • The geochemical properties, sedimentation rates, foraminiferal distributions, and oxygen and carbon isotope records of sediment from Cores S-2 and S-19 were studied to investigate late Holocene paleoceanographic and paleoclimatic changes of the admiralty and Maxwell Bay, King George Island, Antarctica. Total organic carbon contents increased from the lower part to the upper part of Cores S-2 and S-19, whereas calcium carbonate contents decreased from the lower part to the upper part of Cores S-2 and s-19,whereas calcium carbonate contents decreased from the lower part to the upper part of Cores S-2 and S-19. Twenty-seven foraminiferal species were identified, and Globocassidurina biora was mostly a bundant in sediment samples. The sedimentation rates ranged from 24 cm/kyr to 237 cm/kyr based on /SUP 14/C-age dating of G. biora. The sedimentation rates increased rapidly in the upper part of the Cores. б/SUP 18/O values ranged from 0.3% to 6.2% and б/SUP 13/C values ranged from -3.0% to 0.0% with several fluctuations of the values. The lowest part of Core S-2, at 128 cmbsf in depth, had a /SUP 14/C-age of 3,100${\pm}$60 yr B.P. and the lowest part of Core S-19, at 230 cmbsf in depth, of 7,400${\pm}$ yr B.P. The results of geochemical and sedimentological analyses of the core sediments suggested five stages of paleoceanographic and paleoclimatic changes as follows: war,-cold stage of 7,500∼6,500 yr B.P., cold stage of 6,500∼3,600 yr B.P., cold-warm stage of 3,600∼2,770 yr B.P., warm stage of 2,770∼2,380 yr B.P. and cold-warm stage of 2,380∼2,100 yr B.P.

  • PDF

Lithospheric Mantle beneath the Korean Peninsula: Implications from Peridotite Xenoliths in Alkali Basalts (우리나라 상부암석권 맨틀: 페리도타이트 포획암으로부터의 고찰)

  • Choi, Sung-Hi
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.235-247
    • /
    • 2012
  • Peridotite xenoliths hosted by alkali basalts from South Korea occur in Baengnyeong Island, Jeju Island, Boeun, Asan, Pyeongtaek and Ganseong areas. K-Ar whole-rock ages of the basaltic rocks range from 0.1 to 18.9 Ma. The peridotites are dominantly lherzolites and magnesian harzburgites, and the constituent minerals are Fo-rich olivine ($Fo_{88.4-92.0}$), En-rich orthopyroxene, Di-rich clinopyroxene, and Cr-rich spinel (Cr# = 7.8-53.6). Hydrous minerals, such as pargasite and phlogopite, or garnet have not been reported yet. The Korean peridotites are residues after variable degree of partial melting (up to 26%) and melt extraction from fertile MORB mantle. However, some samples (usually refractory harzburgites) exhibit metasomatic enrichment of the highly incompatible elements, such as LREE. Equilibration temperatures estimated using two-pyroxene geothermometry range from ca. 850 to $1050^{\circ}C$. Sr and Nd isotopic compositions in clinopyroxene separates from the Korean peridotites show trends between depleted MORB-like mantle (DMM) and bulk silicate earth (BSE), which can be explained by secondary metasomatic overprinting of a precursor time-integrated depleted mantle. The Korean peridotite clinopyroxenes define mixing trends between DMM and EM2 end members on Sr-Pb and Nd-Pb isotopic correlation diagrams, without any corresponding changes in the basement. This is contrary to what we observe in late Cenozoic intraplate volcanism in East Asia which shows two distinct mantle sources such as a DMM-EM1 array for NE China including Baengnyeong Island and a DMM-EM2 array for Southeast Asia including Jeju Island. This observation suggests the existence of large-scale two distinct mantle domains in the shallow asthenosphere beneath East Asia. The Re-Os model ages on Korean peridotites indicate that they have been isolated from convecting mantle between ca. 1.8 and 1.9 Ga.

Precambrian Crustal Evolution of the Korean Peninsula (한반도 선캠브리아 지각진화사)

  • Lee, Seung-Ryeol;Cho, Kyung-O
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.89-112
    • /
    • 2012
  • The Korean Peninsula consists of three Precambrian blocks: Nangrim, Gyeonggi and Yeongnam massifs. Here we revisited previous stratigraphic relationships, largely based on new geochronologic data, and investigated the crustal evolution history of the Precambrian massifs. The Precambrian strata have been usually divided into lower crystalline basements and upper supracrustal rocks. The former has been considered as Archean or Paleoproterozoic in age, whereas the latter as Paleoproterozoic or later. However, both are revealed as the Paleoproterozoic (2.3-1.8 Ga) strata as a whole, and Archean strata are very limited in the Korean Peninsula. These make the previous stratigraphic system wrong and require reconsideration. The oldest age of the basement rocks can be dated as old as Paleoarchean, suggested by the occurrence of ~3.6 Ga inherited zircon. However, most of crust-forming materials were extracted from mantle around ~2.7 Ga, and produced major portions of crust materials at ~2.5 Ga, which make each massif a discrete continental mass. After that, all the massifs belonged to continental margin orogen during the Paleoproterozoic time, and experienced repeated intracrustal differentiation. After the final cratonization occurring at ~1.9-1.8 Ga, they were stabilized as continental platforms. The Nangrim and Gyeonggi massif included local sedimentary deposition as well as igneous activity during Meso-to Neoproterozoic, but the Yeongnam massif remained stable before the development of Paleozoic basin.

Investigations on Rock Cliff Development in Dunduri, West coast of Korea, Using Schmidt Hammer Rebound Values and OSL Chronology (슈미트해머 반발도와 OSL 연대에 기반한 둔두리 해식애의 형성과정)

  • CHOI, Kwang Hee;SEONG, Yeong Bae;CHOI, Jeong-Heon;JUNG, Pil Mo;LEE, Soo Yong
    • Journal of The Geomorphological Association of Korea
    • /
    • v.20 no.1
    • /
    • pp.45-56
    • /
    • 2013
  • Rock strength test on Dunduri cliff, Chungnam province, Korea, was performed using N-type Schmidt hammer and the depositional ages of the sediments overlying the cliff were derived using OSL dating method. The averaged R-values of the cliffs investigated here were lower than those observed from the shore platforms, but with larger scatter in the former. R-values were negatively correlated to cliff face retreat, implying that the irregularity of the coastal rock faces was closely related to lithology as the weaker rocks retreated much faster than the harder rocks. The overlying deposit of the cliff tends to be thicker at valleys and were poorly sorted with angular to subangular clasts in a matrix of silt. The OSL ages (ca. 70-77 ka) presented here were older than the previously reported exposure ages (ca. 7-30 ka) of the cliff face. Therefore, it is likely that the present sea cliff was developed by expansion of the platform which had been covered by slope deposits since the last interglacial and exposed again during the Holocene.

Environmental Change of High Moor in Mt. Dae-Am of Korean Peninsula (대암산 고층습원의 환경변천)

  • Yoshioka, Takahito;Kang, Sang-Joon
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.1 s.110
    • /
    • pp.45-53
    • /
    • 2005
  • The environmental change of Yong-nup in Mt. Dae-Am, which is located at the northern part of Kangwon-Do, Korea, was assesed with peat sedimentary carbon and nitrogen isotope analysis. The surface layer of the peat (0 ${\sim}$ 5 cm) was 190 year BP, and the middle layers (30 ${\sim}$ 35 cm and 50 ${\sim}$ 55 cm) were 870 year BP and 1900 year BP, respectively. Bulk sedimentation rate was estimated to be about 0.4 mm $year^{-1}$ for 0 cm to 30 cm and 0.15 mm $year^{-1}$ for 35 cm to 50 cm. The $^{14}C$ age of the bottom sediment (75 ${\sim}$ 80 cm) collected and measured in this study was about 1900 year BP, although it was measured that the $^{14}C$ of the lowest bottom sediment in Yong-nup was 4105 ${\pm}$ 175 year BP (GX-23200). Since the $^{14}C$ ages for 50 ${\sim}$ 55 cm and 75 ${\sim}$ 80 cm layers were almost the same as 1890 ${\pm}$ 80 fear BP (NUTA 5364) and 1850 ${\pm}$ 90 year BP (NUTA 5462), respectively, we have estimated that the deep layers (55 ${\sim}$ 80 cm) in the high moor were the original forest soil. The low organic C and N contents in the deeper layers supported the inference. The sediment of 50 ${\sim}$ 55 cm layer contains much sandy material and showed very low organic content, suggesting the erosion (flooding) from the surrounding area. In this context, the Yong-nup, high moor, of Mt. Dae-Am, might have developed to the sampling site at about 1900 year BP. The ${\delta}^{13}C$ values of organic carbon and the ${\delta}^{15}N$ values of total nitrogen in the peat sediments fluctuated with the depths. The profile of ${\delta}^{13}C$ may indicate that the Yong-nup of Mt. Dae-Am have experienced the dry-wet and cool-warm period cycles during the development of the high moor. The ${\delta}^{15}N$ may indicate that the nitrogen cycling in the Yong-nup have changed from the closed (regeneration depending) system to the open (rain $NO_3\;^-$ and $N_2$ fixation depending) system during the development of the high moor.

Geology, Mineralization, and Age of the Pocheon Fe(-Cu) Skarn Deposit, Korea (한국 포천 철(-동) 스카른 광상의 지질, 광화작용 및 생성연대)

  • Kim, Chang Seong;Go, Ji Su;Choi, Seon-Gyu;Kim, Sang-Tae
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.317-333
    • /
    • 2014
  • The Pocheon iron (-copper) deposit, located at the northwestern part of the Precambrian Gyeonggi massif in South Korea, genetically remains controversial. Previous researchers advocated a metamorphosed (-exhalative) sedimentary origin for iron enrichment. In this study, we present strong evidences for skarnification and Fe mineralization, spatially associated with the Myeongseongsan granite. The Pocheon deposit is composed of diverse carbonate rocks such as dolostone and limestone which are partially overprinted by various hydrothermal skarns such as sodic-calcic, calcic and magnesian skarn. Iron (-copper) mineralization occurs mainly in the sodic-calcic skarn zone, locally superimposed by copper mineralization during retrograde stage of skarn. Age data determined on phlogopites from retrograde skarn stage by Ar-Ar and K-Ar methods range from $110.3{\pm}1.0Ma$ to $108.3{\pm}2.8Ma$, showing that skarn iron mineralization in the Pocheon is closely related to the shallow-depth Myeongseongsan granite (ca. 112 Ma). Carbon-oxygen isotopic depletions of carbonates in marbles, diverse skarns, and veins can be explained by decarbonation and interaction with an infiltrating hydrothermal fluids in open system ($XCO_2=0.1$). The results of sulfur isotope analyses indicate that both of sulfide (chalcopyrite-pyrite composite) and anhydrites in skarn have very high sulfur isotope values, suggesting the $^{34}S$ enrichment of the Pocheon sulfide and sulfate sulfur was derived from sulfate in the carbonate protolith. Shear zones with fractures in the Pocheon area channeled the saline, high $fO_2$ hydrothermal fluids, resulting in locally developed intense skarn alteration at temperature range of about $500^{\circ}$ to $400^{\circ}C$.

Type and Characteristics of Debris Landform in Mt. Mudeung (무등산 암설지형의 유형과 특징)

  • Oh, Jong-Joo;Park, Seoung-Phill;Seong, Yeong-Bae
    • Journal of the Korean association of regional geographers
    • /
    • v.18 no.3
    • /
    • pp.253-267
    • /
    • 2012
  • The study looked into the type and characteristics of debris landforms in Mt. Mudeung. By focusing on the representative area, we aimed to categorize the debris landforms based on the morphologic and genetic characteristcis. The types of debris areas in Mt. Mudeung can be divided into the exposed debris type, mixed type of matrix, and the boulder-hidden type. Supply of block in the debris slope area displays different features depending on types of rocks. For the stony slopes of andesite, the block must be moved from the columnar joint or cliff in the upper part. The andesite debris slopes display dominant edge shape while displaying no round shape. The granite stony slopes display dominant round shape and the present exposed slope was assumed to be formed as the core stone which was deep weathered moved along slope during the periglacial era and the matrix was removed after post-glacial era. The movements of blocks are assumed to be caused by solifluction process. The joint area where granite and andesite areas meet, granite is located beneath andesite area, and this implies that blocks were actively freezing and creeping by solifluction and freezing and thawing at that time. It can be assumes that the granite matrix formed plain slope and then andesite boulder covered up the slope. Currently, the blocks in the stony slopes of Mt. Mudeung shows almost no mobility and the stony slopes created under periglacial climate can be considered to be fossil landform.

  • PDF

Geochemistry and Petrogenesis of the Granitic Rocks in the Vicinity of the Mt. Sorak (설악산 부근의 화강암류에 대한 지구화학 및 성인)

  • Kyoung-Won Min;Sung-Bum Kim
    • The Journal of the Petrological Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.35-51
    • /
    • 1996
  • The granitic rocks in the vicinity of the Mt. Sorak, the northeastern part of the NE-SW elongated Mesozoic granitic batholith in the Kyeonggi massif, consist of granodiorite, biotite granite, two-mica granite and alkali feldspar granite. Variations In major and most trace elemental abundances show a typical differentiation trend in a granitic magma. Granitic rocks all display a calc-alkaline trend in the AFM diagram. Also, In the ACF diagram discriminating between I- and S-type granitic rocks, granodiorite and most biotite granite in the southeastern area represent I-type and magnetite-series characteristics, while most biotire granite and two-mica granite in the northwestern area exhibit S-type and ilmenite-series ones.According to recent studies of the granitle rocks In the Inje-Hongcheon district. all ihe granitic rocks distributed in the northeastern part of the Kyeonggi massif have been classified as late Triassic to early Jurassic Daebo granite. With reference of the formerly published ages, an age oi $125.6{\pm}4.4$ Ma calculated by the slope in the plot of $^{87}Rb/^{86}Sr-^{87}Sr/^{86}Sr$ for the biotite granite samples from the southeastern area is inferred as an emplacement age for the granitic rocks in the vicinity of the Mt. Sorak. On the basis of elemental variations and Sr isotope compositions, an possible evolutional process for the granitic magmas in this area is suggested. The primary magma of I-type and magnetite-series generated about 125 Ma by partial melting of igneous originated crustal materials, might be emplaced and evolved through fractional crystallization, convection and assimilation of the surrounding Precambrian metasediments to become S-type and ilmenlte-serles in the outer area, and then solidified to granodiorite, biotite granite and two-mica granite.At the latest stage, the evolved hydrothermal solution altered the formerly solidified biotite granite to alkali feldspar granite and probably later local igneous activities affected the alkali feldspar granite again.

  • PDF