본 연구는 산림 내 임상을 구획하기 위해 고해상도 IKONOS 위성영상을 객체 지향기반으로 분할 및 분류하였다. 영상분할 시 분광정보와 공간정보를 동시에 이용하여 모양이나 분광정보에 있어서 동질한 영역이라고 정의되는 영상객체를 생성하였다. 분할된 영상을 분류계급(class)으로 분류하기 위하여 NDVI와 경사, 방위, 고도 등 지형인자를 새로운 레이어로 추가시키고, 분류개념을 형성하기 위하여 퍼지 규칙을 사용하였다. 영상의 획득시기가 5월초인 점을 감안하여 NDVI는 0.2, 경사 $^{\circ}5^{\circ}$ 그리고 고도 130m를 기준으로 산림과 비산림지역을 분류할 수 있었고, 지형인자에 영향을 많이 받는 굴참나무와 신갈나무 또한 효율적으로 분류할 수 있었다.
Park, Sung-Chun;Jin, Young-Hoon;Roh, Kyong-Bum;Kim, Yong-Gu;Lee, Yong-Hui
Proceedings of the Korea Water Resources Association Conference
/
2010.05a
/
pp.1380-1384
/
2010
현재 환경부에서는 수질오염총량관리제를 위하여 각 단위유역의 말단지점에서 8일 간격으로 수질 및 유량을 측정하고 있으며, 이 자료들을 공개하고 있다. 이러한 양질의 자료의 활용성을 제고하기 위해서는 무엇보다도 자료의 분석을 위한 다양한 기법이 개발되고 제안되어야 한다. 따라서 본 연구에서는 수질 및 유량자료를 동시에 적용하여 두 자료 사이의 관계를 조사하고 특성을 파악하기 위하여 자기조직화 특성지도(Self-Organizing Feature Map: SOFM) 이론을 적용하였다. 시행착오법에 의해 적정한 SOFM 구조를 결정하였으며, 그 결과 $4{\times}4$ 구조의 육각형 배열을 갖는 구조를 이용하였다. SOFM에 의해 분류된 3개의 패턴 중 패턴-1은 유량자료의 크기에 의해 분류되었고, 패턴-2와 패턴-3은 BOD 농도의 크기에 따라 분류된 것으로 파악되었다. 따라서 SOFM의 적용에 의한 자료의 분류를 수행하고, 그 분류기준을 파악할 경우 SOFM의 자료 분석 도구로서의 활용성이 더욱 높아질 것으로 판단된다.
Proceedings of the Korean Information Science Society Conference
/
2003.10a
/
pp.1-3
/
2003
최근 생물정보 기술이 암 진단의 새로운 방법으로 관심을 모으고 있다. 다양한 기계학습 기법을 적용하여 우수한 결과를 얻고 있지만, 의학 분양에서는 정확률이 높은 분류기의 획득과 동시에 획득된 분류규칙을 분석하고 이해할 수 있어야 한다. 생물정보 기술에서 많이 사용되는 유전발현 데이터는 데이터내에 수천 내지 수만의 변수가 존재하여 직접 이들 사이의 복잡한 관계를 표현하고 이해하는 것은 매우 어렵다. 본 논문에서는 이러한 어려움을 극복하기 위해 유전발현 데이터에서 분류에 유용한 특징들을 추출하고 유전자 프로그래밍으로 추출된 특징들을 이용한 암 분류규칙을 생성한다. 림프종 유전발현 데이터에 대하여 실험해본 결과, 90% 수준의 인식 성능을 보였고, 또한 모든 샘플을 완벽하게 분류하는 산술 분류규칙을 발견하였다.
Proceedings of the Korea Information Processing Society Conference
/
2015.04a
/
pp.941-944
/
2015
저장 장치의 급속한 발전으로 인해 기존에 서비스할 수 없었던 개인 사용자를 위한 클라우드 서비스가 활성화되고 있다. 이 중 음악을 대상으로 하는 스트리밍 및 공유 서비스는 다양한 음악의 종류를 수용하기 위해 체계적인 분류를 필요로 한다. 기존의 분류체계는 단순히 작곡가나 업로더의 의견에 의해서 일방적으로 정해지기 때문에 사용자가 중심이 되는 클라우드 서비스에는 어울리지 않는다. 따라서 본 논문은 이와 같은 문제점을 해결하기 위해 사랑의 감정을 기준으로 새로운 분류체계를 제안한다. 자동적인 분류를 위해 데이터마이닝 기법을 접목시켰으며, 원활한 마이닝을 위해 오디오 음악 파일(raw data)을 정해진 크기로 자르고 feature extraction을 통해 오디오 음악 파일에 대한 전처리를 수행하였다. 이후 feature selection을 수행하기 위해 clustering을 이용해 유효한 중요도를 지나는 feature를 선별하였으며 선별된 feature를 토대로 SVN(Support Vector Machine)을 이용해 feature의 중요도에 대한 유효성을 검증함과 동시에 분류를 수행하여 감정을 기반으로 분류한 결과를 보였다.
Annual Conference on Human and Language Technology
/
2019.10a
/
pp.434-439
/
2019
딥러닝 기반 분류 모델에 있어 데이터의 클래스 불균형 문제는 소수 클래스의 분류 성능을 크게 저하시킨다. 본 논문에서는 앞서 언급한 클래스 불균형 문제를 보완하기 위한 방안으로 적대적 학습 기법을 제안한다. 적대적 학습 기법의 성능 향상 여부를 확인하기 위해 총 4종의 딥러닝 기반 분류 모델을 정의하였으며, 해당 모델 간 분류 성능을 비교하였다. 실험 결과, 대화 데이터셋을 이용한 모델 학습 시 적대적 학습 기법을 적용할 경우 다수 클래스의 분류 성능은 유지하면서 동시에 소수 클래스의 분류 성능을 크게 향상시킬 수 있음을 확인하였다.
A comparative study of leaf epidermal microstructure in tribes Forsythieae (Abeliophyllum: 1 species, Forsythia: 12 taxa - 10 species, 2 varieties), Fontanesieae (Fontanesia: 2 species) including one related genus Myxopyrum belonging to Myxopyreae (Myxopyrum: 5 taxa - 4 species, 1 subspecies) was carried out using scanning electron microscopy (SEM) in order to evaluate their significance in the taxonomy. The leaves of investigated taxa are either hypostomatic or amphistomatic, but former is more frequent. The size range of the guard cells is 17.14-47.58 ${\times}$ 11.59- 44.25 ${\mu}m$: the smallest one was found in Forsythia giraldiana (17.48-22.96 ${\times}$ 11.64-12.88 ${\mu}m$), while the largest one was measured to Myxopyrum pierrei (31.50-41.75 ${\times}$ 32.53-44.25 ${\mu}m$). Anomocytic stomatal complex are most frequent type (rarely paracytic), usually both anomocytic and anisocytic occur in one leaf. In surface view both adaxial and abaxial anticlinal walls of the subsidiary cells are variable (e.g., straight/curved, undulate, sinuate, undulate/sinuate). Three types (simple unicellular and multicellular non-glandular, subsessile glandular) of trichomes are found in leaves. Finally, the systematic significance of the leaf epidermal micromorphological characters in idenfitication and elucidation of these tribe, between or within the genera including among the species is also briefly discussed.
Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
/
2003.04a
/
pp.596-601
/
2003
위성영상으로부터 수계영역을 분류하는 일은 홍수관련 분석을 위해서 매우 중요한 일이다. 본 연구에서는 홍수 발생시 취득된 RADARSAT 영상을 이용해서 산악지역의 수계영역의 분류를 목적으로 하였다. SAR 영상은 능동적 영상취득을 수행하므로 광학영상에 비해서 수계영역이 확실하게 나타나는 반면에 지형의 기복에 따른 여러 가지 왜곡현상이 발생한다. 본 연구에서는 RADARSAT 영상으로부터 수계영역의 분류를 위해 방사보정, 그림자 효과제거, 고도자료 및 경사도 자료의 활용 등의 경우로 구분하여 연구를 수행하였다. 그 결과 RADARSAT 영상만을 활용할 경우 분류의 정확도에 한계를 보였으며, RADARSAT 영상에 지형정보를 추가로 활용함으로서 정확한 수계영역을 분류할 수 있었다. 특히 RADARSAT 영상과 경사도 자료를 동시에 활용하여 수계지역을 분류하는 것이 가장 효과적임을 알 수 있었다.
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.425-431
/
2023
음성 어시스턴트 시스템에서 발화의 의도를 분류하고 새로운 의도를 탐지하는 것은 매우 중요한 작업이다. 끊임없이 인입되는 새로운 발화로 인해 기존에 학습된 모델의 의도 분류 성능은 시간이 지남에 따라 점차 낮아진다. 기존 연구들에서 새로운 의도 발견을 위해 제안되었던 클러스터링 방법은 최적의 클러스터 수 결정과 명명에 어려움이 있다. 이러한 제한 사항을 보완하기 위해, 본 연구에서는 대규모 언어 모델 기반의 효과적인 의도 발견 방법을 제안한다. 이 방법은 기존 의도 분류기로 판단하기 어려운 발화에 새로운 의도 레이블을 할당하는 방법이다. 새롭게 인입되는 OOD(Out-of-Domain) 발화 내에서 오분류를 찾아 기존에 정의된 의도를 탐지하고, 새로운 의도를 발견하는 효율적인 프롬프팅 방법도 분석한다. 이를 액티브 러닝 전략과 결합할 경우, 분류 가능한 의도의 개수를 지속 증가시면서도 모델의 성능 하락을 방지할 수 있고, 동시에 새로운 의도 발견을 자동화 할 수 있다.
Journal of the Korea Society of Computer and Information
/
v.18
no.12
/
pp.11-19
/
2013
This paper proposes an algorithm using vibration signals and texture analysis for mechanical fault diagnosis of an induction motor. We analyze characteristics of contrast and pattern of an image converted from vibration signal and extract three texture features using gray-level co-occurrence model(GLCM). Then, the extracted features are used as inputs of a multi-level support vector machine(MLSVM) which utilizes the radial basis function(RBF) kernel function to classify each fault type. In addition, we evaluate the classification performance with varying the parameter from 0.3 to 1.0 for the RBF kernel function of MLSVM, and the proposed algorithm achieved 100% classification accuracy with the parameter of the RBF from 0.3 to 1.0. Moreover, the proposed algorithm achieved about 98% classification accuracy with 15dB and 20dB noise inserted vibration signals.
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.91-96
/
2021
조기 위험 검출은 실시간으로 들어오는 텍스트를 순차적으로 처리하면서 해당 대화에 위험이 있는지 조기에 분류하는 작업으로, 정확도 저하를 최소화하는 동시에 가능한 한 빨리 대화를 분류하는 것을 목적으로 한다. 이러한, 조기 위험 검출은 온라인 그루밍 검출, 보이스 피싱 검출과 같은 다양한 영역에 활용될 수 있다. 이에, 본 논문에서는 조기 위험 검출 문제를 정의하고, 이를 평가할 수 있는 데이터 셋과 Latency F1 평가 지표를 소개한다. 또한, 점진적 문장 분류 모듈과 위험 검출 결정 모듈로 구성된 점진적 조기 텍스트 분류 시스템을 제안한다. 점진적 문장 분류 모듈은 이전 문장들에 대한 메모리 벡터와 현재 문장 벡터를 통해 현재까지의 대화를 분류한다. 위험 검출 결정 모듈은 softmax 분류 점수와 강화학습을 기반으로 하여 Read 또는 Stop 판단을 내린다. 결정 모듈이 Stop 판단을 내리면, 현재까지의 대화에 대한 분류 결과를 전체 대화의 분류 결과로 간주하고 작업을 종료한다. 해당 시스템은 micro F1과 Latency F1 지표 각각에서 0.9684와 0.8918로 높은 검출 정확성 및 검출 신속성을 달성하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.