• Title/Summary/Keyword: 동시경화 접합방법

Search Result 7, Processing Time 0.02 seconds

Stress intensities at the interface corner of the co-cured lap joint with composite and steel adherends (복합재료와 강재료를 이용한 동시경화조인트의 계면 모서리에서의 응력집중계수)

  • 신금철;이정주
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.83-86
    • /
    • 2003
  • 동시경화조인트는 경화 시 복합재료로부터 흘러나오는 수지를 접착제로 사용하기 때문에 제조과정이 간편할 뿐 아니라 복합재료를 표면 처리할 필요가 없기 때문에 기존의 접착제에 의한 접합방법에 비해 장점을 지닌다. 최근 동시경화조인트에 관한 연구가 활발하게 진행되고 있으나 해석적인 방법을 통한 연구는 아직까지 미비하다. 실험적으로 연구된 결과를 보면 동시경화 조인트는 계면 모서리에서 파괴가 시작되어 계면을 따라 파괴가 진행된다. 그러므로 조인트의 계면 모서리에서의 응력집중계수에 관해 연구하는 것이 중요하다. 본 논문에서는 고유치 문제를 고려하여 복합재료와 강재료로 구성된 동시경화조인트의 계면 모서리에서 발생하는 응력 및 변위장을 결정하고, H-적분을 이용하여 응력집중계수를 구하는 방법을 제시하고자 한다.

  • PDF

Tensile load bearing capacities of co-cured single and double lap joints (외면 및 양면겹치기 동시경화조인트의 인장하중 전달용량에 관한 연구)

  • 신금철;이정주
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.95-98
    • /
    • 2001
  • Co-cured joining method is an efficient joining technique because both curing and bonding processes for the composite structures can be achieved simultaneously. It requires neither an adhesive nor a surface treatment of the composite adherend because the excess resin, which is extracted from composite materials during consolidation, accomplishes the co-cured joining process. In this paper, we considered three bond parameters, affecting tensile load bearing capacity of the co-cured single and double lap joints. Filially, we nave presented optimal bonding conditions for co-cured single and double lap joints with steel and composite adherends under tensile loads.

  • PDF

Design parameters on the tensile load bearing capacity of a co-cured lap joint with steel and carbon fiber/epoxy composite adherends (강철재료와 탄소섬유/에폭시 복합재료를 이용한 동시경화 조인트의 인장하중 전달용량에 미치는 설계변수에 관한 연구)

  • 신금철;이정주
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.172-175
    • /
    • 2001
  • The co-cured Joining method, which is regarded as an adhesively bonded Joining method, is an efficient joining technique because both curing and bonding processes for the composite structures can be achieved simultaneously. It requires neither surface treatment onto the composite adherend nor an additional adhesive joining process because the excess resin, which is extracted from composite materials during consolidation, accomplishes the co-cured Joining process. Since the adhesive of the co-cured joint is the same material as the resin of the composite adherend, the analysis and design of the co-cured joint for composite structures are simpler than those of an adhesively bonded joint, which uses an additional adhesive. In this paper, effects of the manufacturing parameters, namely surface roughness, stacking sequence of the composite adherend, and manufacturing pressure in the autoclave during curing process, on the tensile load bearing capacity of the co-cured single lap joint will be experimentally investigated.

  • PDF

Design of a Stainless Steel Insert for Mechanical Joining of Long Fiber-reinforced Composite Structures (장섬유강화 복합재료 구조물의 기계적 접합을 위한 스테인레스 강 인서트 설계)

  • Lee, Sung-Woo;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.31 no.4
    • /
    • pp.139-144
    • /
    • 2018
  • Long Fiber-reinforced composites have advantages of excellent production efficiency and formability of complex shapes compared to conventional continuous fiber reinforced composite materials. However, if we need to make complicated composite shapes or to assemble parts made of different materials, a variety of joining methods are needed. In general, long fiber prepreg sheet (LFPS) contains mold release agent to facilitate demolding after thermoforming. Therefore, mechanical fastening is required in addition to the adhesive bonding to get proper joining strength. In this study, we proposed a stainless steel insert for co-cure bonding which cures LFPS and bonds the stainless steel insert through thermoforming process. The wing of the insert which is spread during the thermoforming process induces adhesion and mechanical wedging effect and serves as a hook to resist the pulling force. The burn-out method was used to confirm the unfolded state of the stainless steel insert wings inserted into the composite material. The static pull-out test was performed to quantitatively evaluate the joining strength. From these experimental results, the condition which guarantees the most appropriate joining strength was derived.

A Study on Adhesion Characteristics of Co-cured Long Fiber Prepreg Sheet-Aluminum Hybrid Structures (동시 경화 장섬유 복합재료-알루미늄 혼성 구조물의 접착 특성 연구)

  • Lee, Sung-Woo;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.31 no.1
    • /
    • pp.17-22
    • /
    • 2018
  • Long Fiber Prepreg Sheet (LFPS) has the advantages of excellent production efficiency and formability for complex shapes compared to conventional continuous fiber reinforced composites. When fibrous composites are used with different materials, joining method is important because strength of the joining part determines the strength of the hybrid structure. In this study, the adhesive joint strengths of co-cured LFPS and aluminum were evaluated under various surface treatment conditions and environmental conditions (temperature and moisture conditions). Mechanical abrasion and plasma exposure were used for the surface treatment. The adhesive joints experienced various surface treatments were tested by using single lap joint specimens. Adhesive strengths under various conditions were compared and the most appropriate condition was determined.

Fracture Mechanical Characterization of Bi-material Interface for the Prediction of Load Bearing Capacity of Composite-Steel Bonded Joints (복합재료-탄소강 접착제 결합 조인트의 하중지지 능력 예측을 위한 이종 재료 접합 계면의 파괴 역학적 분석)

  • Kim, Won-Seok;Shin, Kum-Chel;Lee, Jung-Ju
    • Composites Research
    • /
    • v.19 no.4
    • /
    • pp.15-22
    • /
    • 2006
  • One of the primary factors limiting the application of composite-metal adhesively bonded joints in structural design is the lack of a good evaluation tool for the interfacial strength to predict the load bearing capacity of boned joints. In this paper composite-steel adhesion strength is evaluated in terms of stress intensity factor and fracture toughness of the interface corner. The load bearing capacity of double lap joints, fabricated by co-cured bonding of composite-steel adherends has been determined using fracture mechanical analysis. Bi-material interface comer stress singularity and its order are presented. Finally stress intensities and fracture toughness of the wedge shape bi-material interface corner are determined. Double lap joint failure locus and its mixed mode crack propagation criterion on $K_1-K_{11}$ plane have been developed by tension tests with different bond lengths.

Preparation of Electronic Paper using $TiO_2$ Nanoparticles ($TiO_2$ 나노입자를 이용한 전자종이 제조)

  • Lee, Nam-Hee;Kim, Joong-Hee;Hong, Wan-Sik;Jang, Moon-Ik;Ahn, Jin-Ho;Hwang, Jong-Sun;Kim, Sun-Jae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.97-102
    • /
    • 2004
  • 용액 중에서 나노입자의 전기영동 특성을 이용한 전자종이용 잉크 제조를 위해 $TiO_2$ 나노입자를 저유전율 용매인 cyclohexane에 혼합한 후 용매와 용질의 비중차를 줄이기 위해 분말 상 polyethylen을 첨가하여 high energy milling의 방법으로 입자분쇄와 동시에 입자 표면에 고분자 풍을 코팅하였다. 용액내의 입자 분산성 향상과 용매 착색을 위하여 계면활성제와 oil-blue N을 첨가한 후 전자종이용 잉크를 제조하여 측정한 제타 전위 결과 cyclohexane 내에서 $TiO_2$의 제타전위는 -40mV 정도였으나 polyethylene으로 코팅한 후 계면활성제를 첨가하였을 경우 최대 -110mV 이상의 높은 값을 나타내었다. 실제 디스플레이 특성을 평가하기 위해 포토리소그래피를 이용하여 3인치 크기의 ITO glass 위에 $10{\mu}m$의 크기를 갖는 십자형의 격벽을 $40{\mu}m$의 높이로 균일하게 형성한 후 합성된 전자잉크로 주입하여 상부전극과 하부전극사이에 UV 경화제를 도포하여 UV 접합을 실시하였다. 격벽 내에서 입자의 mobility를 측정하여 환산된 전자잉크의 응답속도는 0.1cm/sec로 측정되었으나, 전기영동시 입자들의 움직임에 따른 반사광의 파형을 측정한 경우 0.07cm/sec의 응답속도를 나타내었다.

  • PDF