• 제목/요약/키워드: 동기화 알고리즘

검색결과 403건 처리시간 0.021초

CSS WPAN에서 주파수 편이를 보상하는 확장 Kalman 필터를 사용한 이동노드의 위치추정 방식 (Location Estimation Method using Extended Kalman Filter with Frequency Offsets in CSS WPAN)

  • 남윤석
    • 정보처리학회논문지C
    • /
    • 제19C권4호
    • /
    • pp.239-246
    • /
    • 2012
  • WPAN에서 위치추정은 UWB를 사용한 선택적 기능으로 규격화되어 있다. 그러나 실제로는 위치추정 기능이 제공되고, 가격이 저렴하고 개발환경이 제공되고 있는 CSS(Chirp Spread Spectrum) 소자를 주로 사용하고 있다. CSS 소자는 2.4GHz 주파수 대역을 사용하고, 표본화 클럭 주파수가 UWB에 비하여 낮고, 시각정보추출 정확도가 떨어지므로 거리추정 오차가 크게 나타난다. 거리추정 오차는 SDS-TWR 방식을 사용하여 10m 거리에서 30cm~1m 정도로 알려지고 있으며, ($10m{\times}10m$) 환경에서 위치추정 오차는 1~2m 정도로 알려지고 있다. 따라서 보다 개선된 성능이 요구되는 응용을 위해서는 거리추정 이후의 후처리 알고리즘 개발이 중요하게 되었다. 본 논문에서는 고정노드의 주파수편이를 확장 Kalman 필터에 적용하는 방식을 연구하였으며, 각 고정노드의 주파수 편이를 공통의 상태변수와 각 고정노드별 주파수편이 상수로 구분하고 이를 통합하는 주파수편이 보상 확장 Kalman 필터 방식을 제안하였다. 제안된 방식은 CSS WPAN 노드를 사용하여 10cm 이하로 매우 정확한 위치오차 범위 내에서도 이동노드의 위치를 추정할 수 있음을 확인하였다.

계층적 Level-of-Detail 표현을 이용한 해마의 국부적인 형상 분석 (Local Shape Analysis of the Hippocampus using Hierarchical Level-of-Detail Representations)

  • 김정식;최수미;최유주;김명희
    • 정보처리학회논문지A
    • /
    • 제11A권7호
    • /
    • pp.555-562
    • /
    • 2004
  • 뇌의 하부 구조인 해마의 전역적 부피 감소와 국부적 형상 변화는 정신의학적 질환에 깊게 관련되어 있다. 해마 구조에 관한 형상 분석 연구는 크게 해마 형상 표현 모델을 구축하고, 이러한 형상 표현으로부터 형상 유사성을 계산하는 과정으로 구성된다. 본 논문에서는 메쉬, 복셀, 골격 데이터를 포함하는 복합적인 옥트리 기반의 형상 표현을 이용하여 해마의 형상을 분석하기 위한 새로운 방법을 제시한다. 우선 해마에 관한 MRI 데이터를 입력으로 받아, 마칭큐브 알고리즘을 사용하여 다해상도 메쉬 모델을 구축한다. 이렇게 구성된 다각형 모델은 깊이맵 기반의 복셀화 방법을 이용하여 중간 단계의 이진 복셀 데이터로 변환된다. 그리고 변환된 복셀 데이터로부터 슬라이스 기반의 골격화 방법에 의하여 해마의 3차원 골격을 추출한다. 그런 후에 옥트리 기반의 다해상도 형상 표현을 얻기위해 해마의 메쉬, 복셀, 골격 데이터를 계층적으로 공간 분할하여 저장하고, 광선 추적 기반의 메쉬 샘플링 방법을 적용하여 샘플 메쉬 데이터를 추출한다. 최종적으로, 형상간 유사성 측정을 위하여 추출된 골격으로부터 방사되는 광선들과 충돌되는 각 샘플 메쉬 쌍에 대하여 $L_2$과 하우스도르프 거리를 계산하고 인터랙티브한 국부적 형상 분석을 지원하기 위하여 마우스 피킹 인터페이스를 채택한다. 이것은 형상의 국부적 변화에 대하여 다양한 해상도에 기반한 형상 분석을 가능하게 한다. 본 논문에서는 실험을 통하여, 제시한 형상 분석 방법이 회전과 스케일 등의 변환에 강인하고, 특히 형상의 국부적 변화 정도를 정확도를 유지하면서 빠르게 평가하는데에 효과적임을 확인하였다. 경로의 수신 신호가 완전 동기 된 수신 신호임을 확인하였다.omonas aeruginosa PA01과 $82\%$로 가장 높은 유사성을 보였고 Pseudomonas arvilla C-1와는 $71\%,$ Pseudomonas putida KT2440과는 $59\%,$ 그리고 Pseudomonas sp. CA10과는 $53\%$의 상동성이 각각 존재하는 것으로 확인하였다.)을 가지고 있음이 확인되었다. 사람에 직접적인 유해성을 가지고 있는 지 확인하기 위해 사람 방광 유래의 T-24세포와 장내 표피 유래의 Caco-2세포에 대한 부착능을 시험하였을 때, 16균주$(42.1\%)$가 T-24방광 세포에, 그리고 17균주$(44.7\%)$가 Caco-2장세포에 대해 강한 부착능을 나타내었다. 특히 11균주$(28.9\%)$는 두 세포 모두에 강한 부착능을 가지고 있었다. Filter mating method를 수행하여 이들 균주들의 독소 생산 유전자와 항생제 내성 유전자가 사람에서 분리된 균주로 전달되는 것을 확인할 수 있었다. 본 실험의 결과는 설사 중상을 나타내는 돼지로부터 분리된 용혈성 E. coli의 독성과 세포 부착능력, 그리고 항생제 내성간의 상호 연관성을 보여주지 않았으나 동물 분리 세균의 항생제 내성과 독소 생산 능력이 유전자 전달을 통해서 뿐만 아니라 세균의 직접 접촉에 의해서도 인체로 전달될 수 있는 것을 보여주는 것이다.다. 본 연구를 토대로 장시간의 체외순환에서는 신장기능을 대표하는 수치들에도

예측 불가능한 호흡 변화에 따른 사이버나이프 종양 추적 방사선 치료의 정확도 분석 (An accuracy analysis of Cyberknife tumor tracking radiotherapy according to unpredictable change of respiration)

  • 서정민;이창열;허현도;김완선
    • 대한방사선치료학회지
    • /
    • 제27권2호
    • /
    • pp.157-166
    • /
    • 2015
  • 목 적 : 사이버나이프 종양 추적 시스템(Cyber-knife tumor tracking system)은 환자 외부에 부착한 LED marker에서 얻어진 실시간 호흡 주기 신호와 호흡에 따라 움직이는 종양의 위치와의 상관관계를 바탕으로 종양의 위치를 미리 예측하고 종양의 움직임을 치료기와 동기화 (Synchronize) 시켜 실시간으로 종양을 추적하며 치료하는 시스템이다. 본 연구의 목적은 사이버나이프 종양 추적 방사선 치료 중 기침이나 수면 등으로 인해 예측 불가능한 갑작스러운 호흡 형태 변화에 따른 종양 추적 방사선 치료 시스템의 정확도를 평가하고자 한다. 대상 및 방법 : 연구에 사용된 호흡 Log 파일은 본원에서 호흡 동조 방사선치료(Respiratory gating radiotherapy)나 사이버나이프 호흡 추적 방사선수술(Cyber-knife tracking radiosurgery)을 받았던 환자의 호흡 Log 파일을 바탕으로, 정현곡선 형태(Sinusoidal pattern)와 갑작스런 변화 형태(Sudden change pattern)의 Log 파일을 이용하여 측정이 가능하도록 재구성하였다. 재구성 된 호흡 Log 파일을 사이버나이프 동적 흉부 팬텀에 입력하여 호흡에 따른 움직임을 구현할 수 있도록 기존 동적 흉부 팬텀의 구동장치를 추가 제작하였고, 호흡의 형태를 팬텀에 적용 시킬 수 있는 프로그램을 개발하였다. 팬텀 내부 표적(Ball cube target)의 움직임은 호흡의 크기에 따라 상하(Superior-Inferior)방향으로 5 mm, 10 mm, 20 mm 3가지 크기의 변위로 구동하게 하였다. 팬텀 내부 표적에 EBT3 필름 2장을 교차 삽입하여 표적 움직임의 변화에 따라 사이버나이프 제조사에서 제공된 End-to-End(E2E) test를 호흡의 형태에 따라 각각 5회씩 실시하고 측정하였다. 종양 추적 시스템의 정확도는 삽입된 필름을 분석하여 표적 오차(Targeting error)로 나타내었고, 추가로 E2E test가 진행되는 동안 상관관계 오차(Correlation error)를 측정하여 분석하였다. 결 과 : 표적 오차는 정현곡선 호흡 형태일 경우 표적 움직임의 크기가 5 mm, 10 mm, 20 mm 에 따라 각각 평균 $1.14{\pm}0.13mm$, $1.05{\pm}0.20mm$, $2.37{\pm}0.17mm$이고, 갑작스런 호흡 변화 형태일 경우 각각 평균 $1.87{\pm}0.19mm$, $2.15{\pm}0.21mm$, $2.44{\pm}0.26mm$으로 분석되었다. 표적 추적에 있어 변위 벡터의 길이로 정의할 수 있는 상관관계 오차는 정현곡선 호흡 형태일 경우 표적 움직임의 크기가 5 mm, 10 mm, 20 mm 에 따라 각각 평균 $0.84{\pm}0.01mm$, $0.70{\pm}0.13mm$, $1.63{\pm}0.10mm$이고, 갑작스런 호흡 변화 형태일 경우 각각 평균 $0.97{\pm}0.06mm$, $1.44{\pm}0.11mm$, $1.98{\pm}0.10mm$으로 분석되었다. 두 호흡 형태에서 모두 상관관계 오차 값이 클수록 표적 오차 값이 크게 나타났다. 정현곡선 호흡 형태의 표적 움직임 크기가 20 mm 이상일 경우, 두 오차 값 모두 사이버나이프 제조사의 권고치인 1.5 mm 이상으로 측정되었다. 결 론 : 표적 움직임의 크기가 클수록 표적 오차 값과 상관관계 오차 값이 증가하는 경향이 있었으며, 정현곡선 호흡 형태보다 갑작스런 호흡 변화 형태에서 오차 값이 크게 나타났다. 호흡의 형태가 규칙적인 정현 곡선 형태더라도 표적의 움직임이 클수록 종양 추적 시스템의 정확도가 감소하는 것으로 판단할 수 있다. 사이버나이프 종양 추적 시스템의 알고리즘을 이용하여 치료 시행 시 환자의 기침 등으로 인하여 갑작스럽게 예측 불가능한 호흡 변화가 있는 경우 치료를 멈추고 내부 표적 확인 과정을 재실시 하여야 하며 호흡 형태를 재조정해야 할 필요가 있다. 치료 중 환자가 본인의 호흡 형태를 관찰 할 수 있는 고글 모니터 등을 착용하여 규칙적인 호흡 형태를 유도하는 것이 치료의 정확도는 향상될 수 있다고 판단된다.

  • PDF