Web Service technologies make the automation of business activities that are distributed across multiple enterprises possible. Existing extended transaction protocols typically resort to compensation actions to regain atomicity and consistency. A reservation-based transaction protocol is proposed to reduce high compensation risk. However, for a serial long running transaction processing, the resource that is reserved in the early stage may be released due to resource holding time expires. Therefore, our analysis theoretically illustrates a scheduling scheme that tries to prevent the loss of resource holding as well as gain an optimized execution plan with minimum compensation cost. In order to estimate cost of different schedules, we set up a costing model and cost metric to quantize compensation risk.
본 논문에서는 딥러닝의 CNN(Convolution Neural Network) 학습을 통하여 악성코드를 실행시키지 않고서 악성코드 변종을 패밀리 그룹으로 분류하는 방법을 연구한다. 먼저 데이터 전처리를 통해 3가지의 서로 다른 방법으로 악성코드 이미지와 메타데이터를 생성하고 이를 CNN으로 학습시킨다. 첫째, 악성코드의 byte 파일을 8비트 gray-scale 이미지로 시각화하는 방법이다. 둘째, 악성코드 asm 파일의 opcode sequence 정보를 추출하고 이를 이미지로 변환하는 방법이다. 셋째, 악성코드 이미지와 메타데이터를 결합하여 분류에 적용하는 방법이다. 이미지 특징 추출을 위해서는 본고에서 제안한 CNN을 통한 학습 방식과 더불어 3개의 Pre-trained된 CNN 모델을 (InceptionV3, Densnet, Resnet-50) 사용하여 전이학습을 진행한다. 전이학습 시에는 마지막 분류 레이어층에서 본 논문에서 선택한 데이터셋에 대해서만 학습하도록 파인튜닝하였다. 결과적으로 가공된 악성코드 데이터를 적용하여 9개의 악성코드 패밀리로 분류하고 예측 정확도를 측정해 비교 분석한다.
전 세계적으로 코로나 바이러스가 확산되면서 언택트 시대가 되었다. 언택트 시대에서는 대부분의 대면활동이 비대면으로 전환되고 있다. 전 세계적으로 열광중인 케이팝 댄스의 대중화를 위해 우리는 비대면으로 댄스 학습이 가능한 DETR 기반 객체탐지를 사용한 댄스 자세교정 연구를 제안한다. 본 논문에서 제안한 댄스 자세교정은 객체탐지에 DETR을 적용한 방식이다. DETR은 기존 객체탐지 모델에서 앵커박스, 바운딩박스 중복처리를 제거하는 NMS같은 휴리스틱한 방법을 사용하지 않고 트랜스포머를 통해 자동으로 학습하도록 만든 모델이다. DETR로 객체탐지를 한 후 강사와 사용자의 동작유사성을 샴 뉴럴 네트워크를 통해 계산한다.
사용자 동작 추정이란 이미지 또는 비디오에서 사용자의 관절 위치를 추정하는 과정을 말한다. 기존의 연구들은 사용자의 몸에서 관절의 큰 부분(어깨, 무릎, 골반, 손, 발 등)만을 추정하거나 손의 세부 관절을 별도로 추정 했다. 하지만 특정 분야(수화, 댄스 등)에선 몸짓과 손을 함께 사용하기에 우리는 사용자 몸의 큰 관절과 손의 세부 관절을 같이 추정하는 방법에 대한 연구를 제안한다. 본 논문에서 제안하는 사용자 동작 추정 방법은 Cascades 방법을 이용한 합성곱 신경망 기반 회귀모델을 적용한 방식이다. 손의 관절들은 다른 큰 관절들(어깨, 무릎, 골반 등)보다 작아서 정밀한 추정을 요구하기에 Cascades 방법을 사용해 보다 정밀하게 추정할 수 있다.
The Journal of the Society of Stroke on Korean Medicine
/
v.10
no.1
/
pp.74-80
/
2009
Myocardial bridging, a congenital coronary anomaly, is present when a segment of a major epicardial coronary artery, runs intramurally through the myocardium. So with each systole, the coronary artery is compressed. It has been associated with angina, arrhythmia, myocardial infarction and sudden cardiac death. This is a case of a 39-year-old woman who was diagnosed myocardial bridge. She complained of recurrent chest pain, palpitation. We diagnosed her as Gyesimtong(JiXiTong, 悸心痛), and prescribed Jeongkicheonhyang-tang(正氣天香湯). After treatment, all of the symptoms had improved and have not recurred for 18 months. This case suggests that oriental medicine therapy can be applicable to improve in symptoms of myocardial bridge.
The Journal of the Society of Stroke on Korean Medicine
/
v.11
no.1
/
pp.105-112
/
2010
Objectives : This cliniclal study was to evaluate the effect of Cheongsangsahwatang (淸上瀉火湯) treatment on the headache after subdural hemorrhage. Methods : We treated two patients who have headache after subdural hemorrhage by oriental medical therapy, specially Cheongsangsahwatang (淸上瀉火湯). We used VAS(Visual Analog Scale) to investigate the effect of oriental medical therapy, specially Cheongsangsahwatang (淸上瀉火湯). Reasults : After prescription of Cheongsangsahwatang (淸上瀉火湯), VAS scores on headache and accompanying symptoms decreased. Conclusions : This study suggests that Cheongsangsahwatang (淸上瀉火湯) is effective in the treatment of headache after subdural hemorrhage.
최근 케이팝 문화의 확산으로 한류라는 브랜드가 구축되고, 이에 관심이 급증함에 따라 관련 콘텐츠 시장의 혁신이 요구되고 있다. 본 논문은 한류문화 전수를 위한 수퍼인텔리전스 기반의 확장현실(XR) 소프트웨어 플랫폼에 관한 것으로, 본 플랫폼을 통하여 한류 문화 체험 및 전수가 가능하다. 세부적으로는 한류 콘텐츠 전수를 위한 확장현실 기반 공간을 바탕으로 딥러닝 기반 영상 생성 및 동작 분석기술, 자동 음악생성 기술, 한류 문화 데이터 보안 기술을 포함한 통합적인 플랫폼 환경을 설계하여 제안한다. 또한 이 플랫폼의 3차원 동작 분류 및 예측을 향상 시킬 수 있는 방법을 제안한다.
최근 인공지능을 활용하여 예술 작품에 몰입할 수 있도록 무대 효과를 디자인하는 연구가 진행되고 있다. 무대 효과 중에서 무대 배경은 공연의 분위기를 형성한다. 춤의 장르별로 무대 배경에 사용되는 이미지를 생성하기 위해 소셜 미디어 기반 무대 배경 생성 시스템이 있다. 하지만 같은 장르 춤은 동일한 무대 배경 이미지가 제공되는 문제가 있다. 같은 장르의 춤이지만 노래의 분위기를 반영하여 차별된 무대 배경 이미지를 제공하는 것이 필요하다. 본 논문은 노래 가사의 감정을 활용하여 Generative Adversarial Network(GAN)을 통해 각 노래의 분위기를 고려한 무대 배경 이미지를 생성하는 방법을 제안한다. GAN은 노래에 포함된 단락별 감정 단어를 추출하여 스타일을 생성하도록 학습된다. 학습된 GAN은 노래 가사에 포함된 감정 단어를 활용하여 곡의 분위기를 반영한 무대 배경 이미지를 생성한다. 노래 가사를 고려하여 무대 배경 이미지를 생성함으로써 곡의 분위기가 고려된 무대 배경 이미지 생성이 가능하다.
재난 및 위기상황이 발생하면 해당 상황을 신속하고 정확하게 파악해야 많은 사람들을 구조할 수 있다. 본 논문은 SNS에서 재난 및 위기 상황을 정확하게 인식하는 연구를 진행한다. 텍스트 정규화, 워드 토큰화, 단어 임베딩 과정을 통해 전처리를 진행하고 키워드와 여러 특징들을 뽑아 SVM classifier를 사용하여 분류 작업을 실시한다. 실험결과 재난과 연관이 있는 경우에 해시태그의 빈도수, URL 빈도수, 두 키워드간의 거리가 다른 특징들의 조합보다 더 좋은 결과를 나타내었다.
Glass is a common object in living environments, but even humans are sometimes unable to identify it. This study proposes a method for detecting glass area by learning edge information from images. The network structure of Transformer is used to accept the base features extracted by backbone and extract the boundary information of RGB images, and both features are used to learn the features of glass area and determine the glass area based on these boundary features. The experimental results show that our proposed method can detect glass area in images.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.