• Title/Summary/Keyword: 도플러 편이 추정

Search Result 12, Processing Time 0.02 seconds

A SNR Estimation Algorithm for Digital Satellite Transponder (디지털 위성트랜스폰더를 위한 SNR 추정 알고리즘)

  • Seo, Kwang-Nam;Choi, Seung-Woon;Kim, Chong-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.9C
    • /
    • pp.729-734
    • /
    • 2010
  • In the initial stage of the communications between a base station and a satellite transponder, the base station transmits the frequency-sweeping un-modulated up-link carrier within a certain frequency range to acquire the doppler frequency shift and signal power between the base station and the satellite in orbital flight. The satellite transponder acquires and tracks the carrier in order to initialize the communication. To control such initialization process, the satellite receiver should analyze the input carrier signal in various ways. This paper presents an SNR estimation algorithm to control the initialization process. The proposed algorithm converts the input signal into the baseband polar coordinate representation and estimates the SNR via the statistics of the angular signal components as well as the status parameters to control the receiver. The Monte-Carlo simulations shows the validity of the estimation proposed.

Mitigation of Inter-Symbol Interference in Underwater Acoustic Communication Using Spatial Filter (공간 필터를 이용한 수중음향통신의 인접 심볼 간 간섭 완화)

  • Eom, Min-Jeong;Park, Ji-Sung;Ji, Yoon-Hee;Kim, J.S.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.1
    • /
    • pp.48-53
    • /
    • 2014
  • The underwater acoustic communication (UAC) is characterized by doubly spread channel. It is included in the time-variant doppler shift and delay-time spreads due to multiple paths. To compensate such distorted signals, various techniques including time-reversal processing, spatial diversity, phase estimator, and equalizer are being applied. In this paper, a spatial filter based on the beamforming is proposed as a method to mitigate such inter-symbol interferences that are generated in time-varying multipath channels. The proposed technique realizes coherent communications by steering the direction of the desired signals and improves the performance of UAC by increasing the signal-to-interference plus noise ratio using the array gain.