• Title/Summary/Keyword: 도플러 센서

Search Result 81, Processing Time 0.024 seconds

A Study on a Traffic Signal Operation system using complex Sensor (복합 센서를 이용한 교통 신호운영체계에 관한 연구)

  • Hwang, Gui-Youn;Jeong, Yang-Kwon;Choi, Hyung-Ju;Hui, Xue-Wu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.10
    • /
    • pp.1573-1580
    • /
    • 2013
  • This study is proposed traffic signal operating system to find existing problems of loop system and complex with doplar system, which have strong linearity, resistence of weather effects and wide range to improve delay problems that used in vehicle detection method. This proposed method have simulated on Southern-Gwangju station to Enter of SeoChang take about 10km by using VISSIM tool and we found this proposed method is 15% through(또는 to) 30% more effective than continuous progress interlocking system or crossing progress interlocking system.

Research on the drone detection based on the radar (레이다 기반의 드론 탐지 기법 연구)

  • Moon, Minjung;Song, Kyungmin;Yu, Sujin;Sim, Hyunseok;Lee, Wookyung
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.2
    • /
    • pp.99-103
    • /
    • 2017
  • Recently, acccording to price decline and miniaturization of drone, it is increased dramatically that drone usage in various category including military and private sectors. In accordance with popular usage, There is a increasing risk of safety accident, national security and public privacy problem. Hence there is a high demand for study and analysis applicable to the related technology and anti-drone method including drone detection and jamming. In general, it is extremely difficult to detect and recognize drones using conventional sensors. In this paper, we classify drone detection technology and Drone detection experiments are performed using CW RADAR to obtain and analyze micro-doppler pattern. This preliminary study aims to provide fundamental theory on radar drone detection and experimental test results such that in-depth anti-drone technology can be established in future.

A Multicopter Detecting and Combating Wild Animals Using a Microwave Doppler sensor (마이크로 도플러 센서를 이용한 유해조수 퇴치드론)

  • Lee, Seul;Kim, Jun-tae;Cho, Soon-jae;Cho, Beom-yeon;Jeong, Seo-hoon;Kim, Hyung-Hoon;Shim, Hyeon-min
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.34-37
    • /
    • 2019
  • The drone uses a Microwave Doppler Radar Sensor which operates at 10.525GHz to recognize harmful animal which intruded into the arable land. Moreover provide user with notification services on risk factors. Subsequently, the user the drone's camera and a camera-only app to watch the farmland in real-time, steer the drone directly, and use the NeoPixel LED ring and the speaker to stimulate the harmful animal's sight and hearing to induce escape.

Speech Intelligibility Analysis on the Laser Detected Sound of the Glass Windows (유리창의 레이저 탐지음에 대한 음성명료도 분석)

  • Kim, Seock-Hyun;Lee, Hyun-Woo;Kim, Hee-Dong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.127-134
    • /
    • 2009
  • In this study, possibility of the laser eavesdropping is investigated on the window glasses with various thicknesses, Glass windows are excited by maximum length sequency (MLS) signal and the vibration sound is detected by a laser doppler vibrometer. From the detected sound, speech intelligibility is objectively estimated. Speech transmission index (STI), which is based on the modulation transfer function (MTF). is calculated for the estimation. Finally, disturbing wave effect on the speech intelligibility is analysed by using an outside speaker and a window shaker attached on the glass window. The purpose of the study is to estimate the possibility of remote eavesdropping by the laser sensor and to evaluate the performance of the homemade window shaker to protect from the remote eavesdropping.

Verification of Multi-point Displacement Response Measurement Algorithm Using Image Processing Technique (영상처리기법을 이용한 다중 변위응답 측정 알고리즘의 검증)

  • Kim, Sung-Wan;Kim, Nam-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.297-307
    • /
    • 2010
  • Recently, maintenance engineering and technology for civil and building structures have begun to draw big attention and actually the number of structures that need to be evaluate on structural safety due to deterioration and performance degradation of structures are rapidly increasing. When stiffness is decreased because of deterioration of structures and member cracks, dynamic characteristics of structures would be changed. And it is important that the damaged areas and extent of the damage are correctly evaluated by analyzing dynamic characteristics from the actual behavior of a structure. In general, typical measurement instruments used for structure monitoring are dynamic instruments. Existing dynamic instruments are not easy to obtain reliable data when the cable connecting measurement sensors and device is long, and have uneconomical for 1 to 1 connection process between each sensor and instrument. Therefore, a method without attaching sensors to measure vibration at a long range is required. The representative applicable non-contact methods to measure the vibration of structures are laser doppler effect, a method using GPS, and image processing technique. The method using laser doppler effect shows relatively high accuracy but uneconomical while the method using GPS requires expensive equipment, and has its signal's own error and limited speed of sampling rate. But the method using image signal is simple and economical, and is proper to get vibration of inaccessible structures and dynamic characteristics. Image signals of camera instead of sensors had been recently used by many researchers. But the existing method, which records a point of a target attached on a structure and then measures vibration using image processing technique, could have relatively the limited objects of measurement. Therefore, this study conducted shaking table test and field load test to verify the validity of the method that can measure multi-point displacement responses of structures using image processing technique.

Error Budget Analysis for Geolocation Accuracy of High Resolution SAR Satellite Imagery (고해상도 SAR 영상의 기하 위치정확도 관련 중요변수 분석)

  • Hong, Seung Hwan;Sohn, Hong Gyoo;Kim, Sang Pil;Jang, Hyo Seon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_1
    • /
    • pp.447-454
    • /
    • 2013
  • The geolocation accuracy of SAR satellite imagery is affected by orbit and sensor information and external variables such as DEM accuracy and atmospheric delay. To predict geolocation accuracy of KOMPSAT-5 and KOMPSAT-6, this paper uses TerraSAR-X imagery which has similar spec. Simulation data for sensitivity analysis are generated using range equation and doppler equation with several key error sources. As a result of simulation analysis, the effect of sensor information error is larger than orbit information error. Especially, onboard electronic delay needs to be monitored periodically because this error affects geolocation accuracy of slant range direction by 30m. Additionally, DEM accuracy causes geolocation error by 20~30m in mountainous area and atmospheric delay can occur by 5m in response to atmospheric condition and incidence angle.

Multi-point Dynamic Displacement Measurements of Structures Using Digital Image Correlation Technique (Digital Image Correlation기법을 이용한 구조물의 다중 동적변위응답 측정)

  • Kim, Sung-Wan;Kim, Nam-Sik
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.11-19
    • /
    • 2009
  • Recently, concerns relating to the maintenance of large structures have been increased. In addition, the number of large structures that need to be evaluated for their structural safety due to natural disasters and structural deterioration has been rapidly increasing. It is common for the structural characteristics of an older large structure to differ from the characteristics in the initial design stage, and changes in dynamic characteristics may result from a reduction in stiffness due to cracks on the materials. The process of deterioration of such structures enables the detection of damaged locations, as well as a quantitative evaluation. One of the typical measuring instruments used for the monitoring of bridges and buildings is the dynamic measurement system. Conventional dynamic measurement systems require considerable cabling to facilitate a direct connection between sensor and DAQ logger. For this reason, a method of measuring structural responses from a remote distance without the mounted sensors is needed. In terms of non-contact methods that are applicable to dynamic response measurement, the methods using the doppler effect of a laser or a GPS are commonly used. However, such methods could not be generally applied to bridge structures because of their costs and inaccuracies. Alternatively, a method using a visual image can be economical as well as feasible for measuring vibration signals of inaccessible bridge structures and extracting their dynamic characteristics. Many studies have been conducted using camera visual signals instead of conventional mounted sensors. However, these studies have been focused on measuring displacement response by an image processing technique after recording a position of the target mounted on the structure, in which the number of measurement targets may be limited. Therefore, in this study, a model experiment was carried out to verify the measurement algorithm for measuring multi-point displacement responses by using a DIC (Digital Image Correlation) technique.

Uncertainty Analysis on Vertical Wind Profile Measurement of LIDAR for Wind Resource Assessment (풍력자원평가를 위한 라이다 관측 시 풍속연직분포 불확도 분석)

  • Kim, Hyun-Goo;Choi, Ji-Hwee;Jang, Moon-Seok;Jeon, Wan-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.185.1-185.1
    • /
    • 2010
  • 원격탐사(remote sensing)란 관측 대상과의 접촉 없이 멀리서 정보를 얻어내는 기술을 말한다. 기상관측분야에는 이미 소다(SODAR) 장비가 폭넓게 사용되거 왔으나 최근 풍력자원평가(wind resource assessment)를 위한 풍황측정에 SODAR와 더불어 라이다(LIDAR)가 적극적으로 활용되기 시작하고 있다. 참고로 SODAR(SOnic Detection And Ranging)는 수직 및 동서 남북 방향으로 음파를 발생시키고 대기유동에 의해 산란 반사된 에코를 수신하여 진동수 변화와 반사에코 강도를 측정하여 각 방향의 에코자료를 벡터 합성함으로써 풍향 및 풍속을 산출하는 원리이다. 반면 LIDAR(Light Detection And Ranging)는 비교적 최근에 풍황측정 용도로 개발된 레이저 탐지에 바탕을 둔 원거리 센서로, 공기입자(먼지, 수증기, 구름, 안개, 오염물질 등)에 의해 산란된 레이저 발산의 도플러 쉬프트(Doppler shift)를 이용하여 풍향 및 풍속을 측정하는 원격탐사 장비이다. 풍력자원평가 측면에서 라이다는 그 정확도가 IEC61400-12에 의거한 풍황탑(met-mast) 측정자료 다수와의 비교검증 실측평가(Albers et al., 2009)를 통하여 입증된 바 있다. 한편 한국에너지기술연구원에서 운용 중인 라이다 시스템은 그림 1의 우측 그림과 같이 1초에 $360^{\circ}$를 스캔하여 50지점에서 반사되는 레이저를 스펙트럼으로 측정하되 설정된 관측높이에서 풍속은 샘플링 부피(sampling volume)의 평균값으로 정의된다. 그런데 샘플링 부피는 설정된 관측높이로부터 상하 12.5m, 총 25m의 높이구간에서 관측한 스펙트럼의 평균값을 그 중앙지점에서의 풍속으로 환산하는 알고리듬(algorithm)을 채택하고 있다. 따라서 비선형적으로 변화하는 풍속연직분포 관측 시 풍속환산 알고리듬에 의한 측정오차가 개입될 가능성이 존재하는 것이다. 이에 본 연구에서는 라이다에 의한 풍속연직분포 측정 시 샘플링 부피의 구간 평균화 과정에서 발생하는 불확도(uncertainty)를 정량적으로 분석함으로써 라이다에 의한 풍속연직분포 관측의 불확도를 정량평가하고자 한다.

  • PDF

Convergence of Initial Estimation Error in a Hybrid Underwater Navigation System with a Range Sonar (초음파 거리계를 갖는 수중복합항법시스템의 초기오차 수렴 특성)

  • LEE PAN MOOK;JUN BONG HUAN;KIM SEA MOON;CHOI HYUN TAEK;LEE CHONG MOO;KIM KI HUN
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.6 s.67
    • /
    • pp.78-85
    • /
    • 2005
  • Initial alignment and localization are important topics in inertial navigation systems, since misalignment and initial position error wholly propagate into the navigation systems and deteriorate the performance of the systems. This paper presents the error convergence characteristics of the hybrid navigation system for underwater vehicles initial position, which is based on an inertial measurement unit (IMU) accompanying a range sensor. This paper demonstrates the improvement on the navigational performance oj the hybrid system with the range information, especially focused on the convergence of the estimation of underwater vehicles initial position error. Simulations are performed with experimental data obtained from a rotating ann test with a fish model. The convergence speed and condition of the initial error removal for random initial position errors are examined with Monte Carlo simulation. In addition, numerical simulation is conducted with an AUV model in lawn-mowing survey mode to illustrate the error convergence of the hybrid navigation System for initial position error.

Covariance-based source localization performance improvement for underwater ultra-short baseline systems (공분산 기반 수중 ultra-short baseline 시스템의 위치 추정 성능 개선 기법)

  • Sangman Han;Minhyuk Cha;Haklim Ko;Hojun Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.89-94
    • /
    • 2024
  • Since Ultra-Short BaseLine (USBL) uses an array with narrow sensor spacing, precise synchronization is required to improve source localization performances. However, in the underwater environment, synchronization errors occur due to relatively strong noise and underwater acoustic channels such as multipath and Doppler, which deteriorates the source localization performances. This paper proposes a covariance-based synchronization compensation method to improve the source localization performances of the underwater USBL systems. The proposed method arranges the received signals through cross-correlation and calculates the covariance of the arranged signals. The synchronization error is related to the phase difference in the covariance. Thus, the phase difference is estimated as the covariance and compensated. Computer simulations demonstrate that the proposed method has better source localization performances than the conventional cross-correlation method.