• 제목/요약/키워드: 도청보안

Search Result 210, Processing Time 0.032 seconds

Hash-based Authentication Protocol for RFID Applicable to Desynchronization between the Server and Tag with efficient searching method (서버와 태그 비동기시에도 효율적으로 검색이 가능한 해시기반 RFID 인증 프로토콜)

  • Kwon, Hye-Jin;Kim, Hae-Mun;Jeong, Seon-Yeong;Kim, Soon-Ja
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.5
    • /
    • pp.71-82
    • /
    • 2011
  • The RFID system provides undeniable advantages so that it is used for various application. However recent RFID system is vulnerable to some attacks as eavesdropping, replay attack, message hijacking, and tag tampering, because the messages are transmitted through the wireless channel and the tags are cheap. Above attacks cause the tag and reader impersonation, denial of service by invalidating tag, and the location tracking concerning bearer of tags, A lot of RFID authentication protocol bas been proposed to solve the vulnerability. Since Weis, Sanna, Rivest, and Engel, proposed the bash-based RFID authentication protocol, many researchers have improved hash-based authentication protocol and recent bash-based authentication protocols provide security and desirable privacy. However, it remains open problem to reduce the tag identification time as long as privacy and security are still guaranteed. Here we propose a new protocol in which the tags generate the message depending on the state of previous communitions between tag and reader. In consequence, our protocol allows a server to identify a tag in a reasonable amount of time while ensuring security and privacy, To be specific, we reduced the time for the server to identify a tag when the last session finished abnormally by at least 50% compared with other bash-based schemes that ensure levels of security and privacy similar to ours.

A Performance Comparison of the Mobile Agent Model with the Client-Server Model under Security Conditions (보안 서비스를 고려한 이동 에이전트 모델과 클라이언트-서버 모델의 성능 비교)

  • Han, Seung-Wan;Jeong, Ki-Moon;Park, Seung-Bae;Lim, Hyeong-Seok
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.3
    • /
    • pp.286-298
    • /
    • 2002
  • The Remote Procedure Call(RPC) has been traditionally used for Inter Process Communication(IPC) among precesses in distributed computing environment. As distributed applications have been complicated more and more, the Mobile Agent paradigm for IPC is emerged. Because there are some paradigms for IPC, researches to evaluate and compare the performance of each paradigm are issued recently. But the performance models used in the previous research did not reflect real distributed computing environment correctly, because they did not consider the evacuation elements for providing security services. Since real distributed environment is open, it is very vulnerable to a variety of attacks. In order to execute applications securely in distributed computing environment, security services which protect applications and information against the attacks must be considered. In this paper, we evaluate and compare the performance of the Remote Procedure Call with that of the Mobile Agent in IPC paradigms. We examine security services to execute applications securely, and propose new performance models considering those services. We design performance models, which describe information retrieval system through N database services, using Petri Net. We compare the performance of two paradigms by assigning numerical values to parameters and measuring the execution time of two paradigms. In this paper, the comparison of two performance models with security services for secure communication shows the results that the execution time of the Remote Procedure Call performance model is sharply increased because of many communications with the high cryptography mechanism between hosts, and that the execution time of the Mobile Agent model is gradually increased because the Mobile Agent paradigm can reduce the quantity of the communications between hosts.

A Study on Protection Profile for Multi-function Devices (다기능 주변기기에 대한 보호프로파일에 관한 연구)

  • Lee, Dongubm
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.5
    • /
    • pp.1257-1268
    • /
    • 2015
  • Multi-functional devices was originally an equipment performing image processing, but function transmitting image data digitized by combining fax function and function of network are added and it was rapidly developed. Also, functions of internet application, application expansion, remote sharing and image treatment were added to multi-functional devices. But, multi-functional devices can cause security vulnerability such as data exposure, eavesdropping, etc. because of the threatening by network connection. Therefore, common criteria of multi-functional devices are necessary, but there is no protection profile for multi-functional devices now. Therefore, concrete standards of evaluation are not applied to evaluate secure for products, so it was difficult to maintain uniformity of evaluation quality. Therefore, this paper developed protection profile for multi-functional devices based on common criteria of evaluation so as to analyze threats of multi-functional devices and use secure multi-functional devices.

An Efficient Authentication Mechanism Strengthen the Privacy Protection in 3G Network (3G 네트워크에서 프라이버시 보호를 강화한 효율적인 인증 메커니즘)

  • Jeon, Seo-Kwan;Oh, Soo-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.5049-5057
    • /
    • 2010
  • As communication technologies are developed and variety of services to mobile devices are provided, mobile users is rapidly increasing every year. However, mobile services running on wireless network environment are exposed to various security threats, such as illegal tampering, eavesdropping, and disguising identity. Accordingly, the secure mobile communications services to 3GPP were established that the standard for 3GPP-AKA specified authentication and key agreement. But in the standard, sequence number synchronization problem using false base station attack and privacy problem were discovered through related researches. In this paper, we propose an efficient authentication mechanism for enhanced privacy protection in the 3G network. We solve the sequence number synchronization existing 3GPP authentication scheme using timestamp and strengthen a privacy problem using secret token. In addition, the proposed scheme can improve the bandwidth consumption between serving network and home network and the problem of authentication data overhead for the serving network because it uses only one authentication vector.

Design of digital communication systems using DCSK chaotic modulation (DCSK 카오스 변조를 이용한 디지털 통신 시스템의 설계)

  • Jang, Eun-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.5
    • /
    • pp.565-570
    • /
    • 2015
  • Spread spectrum communications have increased interest due to their immunity to channel fading and low probability of intercept. One of the limitations of the traditional digital spread spectrum systems is the need for spreading code synchronization. Chaotic communication is the analogue alternative of digital spread spectrum systems beside some extra features like simple transceiver structures. In this paper, This paper was used instead of the digital modulation and demodulation carriers for use in the chaotic signal in a digital communication system among the chaotic modulation schemes, the Differential Chaos Shift Keying(DCSK) is the most efficient one because its demodulator detects the data without the need to chaotic signal phase recovery. Also Implementation of Differential Chaos Shift Keying Communication System Using Matlab/Simulink and the receiver con decode the binary information sent by the transmitter, performance curves of DCSK are given in terms of bit-error probability versus signal to noise ratio with spreading factor as a parameter and we compare it to BPSK modulation.

A Design of KDPC(Key Distributed Protocol based on Cluster) using ECDH Algorithm on USN Environment (USN 환경에서 ECDH 알고리즘을 이용한 KDPC(Key Distribution Protocol based on Cluster) 설계)

  • Jeong, Eun-Hee;Lee, Byung-Kwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.856-858
    • /
    • 2013
  • The data which is sensed on USN(Ubiquitous Sensor Network) environment is concerned with personal privacy and the secret information of business, but it has more vulnerable characteristics, in contrast to common networks. In other words, USN has the vulnerabilities which is easily exposed to the attacks such as the eavesdropping of sensor information, the distribution of abnormal packets, the reuse of message, an forgery attack, and denial of service attacks. Therefore, the key is necessarily required for secure communication between sensor nodes. This paper proposes a KDPC(Key Distribution Protocol based on Cluster) using ECDH algorithm by considering the characteristics of sensor network. As a result, the KDPC can provide the safe USN environment by detecting the forgery data and preventing the exposure of sensing data.

  • PDF

A Robust Multiple Set-Top Box Authentication Scheme for IPTV Against Smart Card Cloning Attack (IPTV 환경에서 스마트카드 복제에 강건한 다중 셋톱박스 인증기법)

  • Lim, Ji-Hwan;Oh, Hee-Kuck;Kim, Sang-Jin
    • The KIPS Transactions:PartC
    • /
    • v.17C no.1
    • /
    • pp.37-46
    • /
    • 2010
  • In an IPTV system, the rights of the content and service provider can be protected by using Conditional Access System (CAS) and Digital Right Management (DRM). In case of the CAS, only the authorized user who has structured authentication keys can decrypt the encrypted content. However, since the CAS establishes a secure channel only between content provider and Smart Card (SC), it cannot protect the system against McCormac Hack attack which eavesdrops on unsecure channel between SC and Set-Top Box (STB) and SC cloning attack. In this paper, we propose a robust multi-STB assisted SC / STB authentication protocol which can protect the IPTV system against not only McCormac Hack attack, but also SC cloning attack. The previous works which bind a STB and a SC during the SC registration phase against the SC cloning attack does not support multi-STB environments. The proposed system which dynamically updates the STB information in subscriber management system using the bi-directional channel characteristic of IPTV system can support the user's multi-STB device effectively.

Security Analysis and Improvements of Authentication Protocol for Privacy Protection in RFID Systems (프라이버시 보호를 위한 RFID 인증 프로토콜의 안전성 분석과 개선)

  • Kim, Jiye;Won, Dongho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.5
    • /
    • pp.581-591
    • /
    • 2016
  • RFID(Radio Frequency IDentification) is a key technology in ubiquitous computing and is expected to be employed in more fields in the near future. Nevertheless, the RFID system is vulnerable to attacks by eavesdropping or altering of the messages transmitted in wireless channels. In 2013, Oh et al. proposed a mutual authentication protocol between a tag and a reader in RFID systems. Their protocol is designed to resist location tracking for privacy protection. However, all tags and readers use only one network-wide key in their protocol and tags are usually vulnerable to physical attacks. We found that their protocol is still vulnerable to tag/reader impersonation attacks and location tracking if an attacker obtains the network-wide key from a tag. In this paper, we propose a security improved authentication protocol for privacy protection in RFID systems. In addition, we demonstrate that the proposed scheme is efficient in terms of computation and communication costs.

New Chaos Map for BER Performance Improvement in Chaos Communication System Using CDSK (상관지연편이변조 방식의 혼돈(Chaos) 통신 방식에서 비트오류율 성능 향상을 위한 새로운 혼돈 지도)

  • Lee, Jun-Hyun;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.8
    • /
    • pp.629-637
    • /
    • 2013
  • Chaos communication systems have the characteristics such as non-periodic, wide-band, non-predictability of signals and easy implementation. There have been many studies about chaos communication systems because of these advantages. But, chaos communication systems have low BER(Bit Error Rate) compare to general digital communication system. Existing researches on chaos communication systems only analyze BER performance according to various chaos maps. There are no studies on analysis of BER performance according to PDF(Probability Density Function) of chaos maps. In this paper, we analyze the BER performance according to changing parameter, equation, and initial values of chaos map's PDF. In addition, we propose new chaos map to improve BER performance. Simulation results show that BER performance of CDSK(Correlation Delay Shift Keying) is changed when PDF of chaos map changed. And the proposed chaos map has a better BER performance compare to previous chaos maps such as Tent map, Logistic map, and Henon map.

A Mutual Authentication Protocol using Key Change Step by Step for RFID Systems (단계적 키 변환을 이용한 RFID 상호 인증 프로토콜)

  • Chung, Kyung-Ho;Kim, Kyoung-Youl;Oh, Se-Jin;Lee, Jae-Kang;Park, Yong-Soo;Ahn, Kwang-Seon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.3B
    • /
    • pp.462-473
    • /
    • 2010
  • The RFID system has the security problem of location tracking and user privacy. In order to solve this problem, the cryptographic access method using hash function is difficult to in real applications. Because there is a limit of computing and storage capacity of Tag, but the safety is proved. The lightweight authentication methods like HB and LMAP guarantee the high efficiency, but the safety is not enough to use. In this paper, we use the AES for RFID Authentication, and solve the problem of using fixed key with key change step by step. The symmetric keys of the tag and server are changed by the random number generated by tag, reader and server successively. This could prevent the key exposure. As a result, the output of the tag and reader always changes. These key changes could make it possible to prevent eavesdropping, replay attack, location tracking and spoofing.