• Title/Summary/Keyword: 도어

Search Result 692, Processing Time 0.024 seconds

Structural Analysis According to the Configuration of Door Impact Bar (도어 충격봉의 형상에 따른 구조 해석)

  • Cho, Jae-Ung;Kim, Yong-Gyeom;Kim, Sei-Hwan
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05b
    • /
    • pp.608-610
    • /
    • 2011
  • 본 논문에서는 자동차의 도어의 충격봉의 형상에 따른 변형률과 최대응력을 ANSYS Workbench환경을 이용해 원형, 반원형, 모자형 개단면, 정사각형 등의 단면 형상에 따른 변형량 특성을 측정해 본 결과 변형률은 모자형 개단면 모델이 가장 적은 변형률을 가지는 것으로 나왔으며, 무게가 30%정도 적게 나가는 반원형도 두 번째로 적은 변형률을 가지는 것으로 나타났다. 최대응력의 경우는 반원형이 가장 적은 최대응력 값을 가지는 것으로 나왔고, 변형률과는 다르게 중심부 보다는 충격봉과 프레임의 연결부위에서 최대응력이 발생하는 것을 알 수 있었다. 이를 통해서 충격봉의 중심부는 변형률 및 응력이 다른 부분에 비해서 크게 작용하므로, 중앙부위의 단면계수가 높아야 한다.

  • PDF

Development of Induction Motor Drive system for the Elevator door using Vector control (벡터제어를 적용한 엘리베이터 도어용 유도전동기 구동 시스템 개발)

  • Park, N.C.;Cho, Y.H.;Lee, Y.G.;Mok, H.S.;Kim, S.H.
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.171-173
    • /
    • 2008
  • 스칼라 제어에 속하는 V/F 방식은 기본파 전압의 실효값과 주파수를 독립변수로 하여 평균적인 토크를 제어함으로 제어가 쉽고 구현이 간단하여 산업계에서 널리 쓰이고 있다. 그러나 주파수의 변화에 따라서 전동기 내부 임피던스도 변화하기 때문에 단순히 주파수만을 가변 하는 것만으로는 약계자에 의한 토오크 부족이나 과여자에 의한 여자 포화등에 의해 역률과 효율이 떨어진다. 또한 순시적인 토오크 제어가 불가능하여 전동기의 고성능 제어가 어렵다. 본 논문에서는 벡터제어를 적용한 엘리베이터 도어용 유도전동기 구동 시스템을 제안하고 실험을 통해 그 성능을 확인하였다.

  • PDF

The design and implementation of wireless video door phone with embedded RTOS using Blutooth (블루투스를 이용한 RTOS 내장형 무선 도어폰 설계 및 구현)

  • Cho, Myong-Hun;Kang, Myong-Goo;Kim, Dae-Jin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.05b
    • /
    • pp.1097-1100
    • /
    • 2003
  • 본 논문에서는 최근 유선을 대치하기 위해 등장한 여러 가지 근거리 무선통신 방식 중 블루투스 기술과 시스템의 안정성 및 리소스의 효율적 사용을 위한 멀티태스킹이 가능한 RTOS(uC/OS)를 이용하여 투선 비디오 도어폰을 설계 및 구현해 본다. 송신기는 카메라, 비디오 디코더, 영상 압축칩 프로세서(ARM7TDMI), 메모리, 블루투스 모듈 등을 이용하여 임베디드 시스템을 구성하였고, 수신기는 블루투스 모듈을 통해 수신된 영상 데이터를 모니터에 디스플레이 할 수 있다.

  • PDF

THE PRESSURE-TRANSIENT ANALYSIS ON THE PLATFORM SCREEN DOORS OF THE SIDE PLATFORMS IN A SUBWAY STATION WITH VARIOUS OPERATING CONDITIONS (열차 운행에 따른 상대식 승강장에서 지하철 승강장 스크린 도어 풍압해석)

  • Lee, Myung-Sung;Ahn, Hyuk-Jin;Won, Chan-Shik;Hur, Nahm-Keon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.283-289
    • /
    • 2008
  • The pressure-transient on platform screen doors in side platforms caused by passing trains with various operating conditions have been investigated numerically. The transient compressible three-dimensional flow simulations are performed with actual operating conditions of two trains by adopting moving mesh technique. To achieve more realistic results, the detailed shape of train and the subway station including tunnels connecting the adjacent stations are represented in the computational domain. Numerical analyses are carried out for cases considering arriving/passing/departing train with or without train stopped on the opposite track, and both trains on the move in opposite direction. From the numerical results, the maximum pressure on the platform screen doors, which is predicted in the case of two passing trains, satisfied the design standards for similar stations.

  • PDF

Shape Optimal Design of the Door Frame of a Microwave Oven to Minimize Its Twisting Deformation (비틀림 변형 최소화를 위한 전자레인지 도어 프레임의 형상 최적설계)

  • Lee Boo-Youn;Koo Jin-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.1016-1023
    • /
    • 2006
  • When one opens the door of a microwave oven during its operation, twisting deformation of the door occurs, which may cause leakage of microwave through the gap between the door and the front plate. A numerical optimization is implemented to minimize the gap by maximizing twisting stiffness of the door of the oven. Design variables are deformed, which describe the shape of the bead in the horizontal and vertical flanges of the door frame. To minimize the twisting deformation, Two optimal design problems to find shapes of the bead in the flange are established. The problems are solved by a numerical optimization technique, their results being evaluated.

Door Effort Analysis for Door Checker of Integrated Type with Torsion Bar Spring (토션 바 스프링을 적용한 일체형 도어체커 개폐력 해석)

  • Yoon, Sang-Min;Kang, Sung-Jong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.86-91
    • /
    • 2012
  • Door effort was calculated for a new door checker with torsion bar spring and integrated checker case by FE analysis. A hybrid checker arm which has peaks and valleys only on the upper surface was adopted to reduce noise in operation and make operation with more distinctive steps. The checker arm was modeled using shell elements to estimate both the longitudinal and the lateral resistance force by checker arm. By combining the checker arm resistance force obtained from analysis and the door self-closing force by the theoretical calculation, door effort was predicted to show the good correlation with test results. In addition the unrolling effect of roller model was investigated and a new roller type for more smooth rolling was studied.

THE PRESSURE-TRANSIENT ANALYSIS ON THE PLATFORM SCREEN DOORS OF THE SIDE PLATFORMS IN A SUBWAY STATION WITH VARIOUS OPERATING CONDITIONS (열차 운행에 따른 상대식 승강장에서 지하철 승강장 스크린 도어 풍압해석)

  • Lee, Myung-Sung;Ahn, Hyuk-Jin;Won, Chan-Shik;Hur, Nahm-Keon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.283-289
    • /
    • 2008
  • The pressure-transient on platform screen doors in side platforms caused by passing trains with various operating conditions have been investigated numerically. The transient compressible three-dimensional flow simulations are performed with actual operating conditions of two trains by adopting moving mesh technique. To achieve more realistic results, the detailed shape of train and the subway station including tunnels connecting the adjacent stations are represented in the computational domain. Numerical analyses are carried out for cases considering arriving/passing/departing train with or without train stopped on the opposite track, and both trains on the move in opposite direction. From the numerical results, the maximum pressure on the platform screen doors, which is predicted in the case of two passing trains, satisfied the design standards for similar stations.

  • PDF

A Study on the Decrease of Pressure in Truck Cabin With Closing Door (도어 닫힘에 따른 차실내압 저감에 관한 연구)

  • Kim N. H.;Rho B. J.;Kim W. T.;Namkung J. W.;Lee S. J.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.667-670
    • /
    • 2002
  • Vehicle's airtight integrity is a very important factor that greatly affects passenger's habitability. However, when a door is closed, the pressure in the passenger compartment increases due to the vehicle's airtight integrity. That pressurizes the eardrums of the passenger, and makes passenger unpleasant. Thus, in this study, the configurations of air ventilation hasve been investigated to reduce pressure in the passenger compartment. Truck cab is utilized to measure the pressure in the passenger compartment. Various kinds of air ventilations are considered to find out optimized pressure in truck cab when a door is closed.

  • PDF

Evaluation of the Structural Stability of Platform Screen Door (PSD) due to Train Wind Pressure (열차 진입 시 풍압에 의한 완전 밀폐형 승강장 스크린 도어(PSD)시스템의 구조 안정성 평가)

  • Lee, Jae-Youl;Ryu, Bong-Jo;Kim, Dong-Hyun;Lee, Eun-Kyu;Shin, Kwang-Bok
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.5 s.36
    • /
    • pp.594-600
    • /
    • 2006
  • In this study, transient and quasi-static analysis were done for the evaluation of structural integrity of the platform screen door due to train wind pressure. Fluent 6.0 was used to calculate the train wind pressure, and Ansys 10.0 was used to evaluate the structural stability of platform screen door due to train wind pressure. Transient analysis was used to check the design requirements of platform screen door, and quasi-static analysis was introduced to save the calculating time and check quickly structural performances when compared to those of transient analysis. The results show that structural stability of the platform screen door under train wind pressure is proven and quasi-static analysis can quickly check the structural integrity of platform screen door.

Analysis on the Train-wind Pressure applied to Screen Door in Island-type Platform of Subway (지하철의 섬식 정거장에 설치된 스크린도어에 가해지는 열차풍압 해석)

  • Kim, Jung-Yup
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.138-141
    • /
    • 2008
  • The screen doors installed in the station of subway are subject to the train-wind pressure caused by the operation of trains. The train-wind pressure has to be correctly estimated for the design of safe structure of screen doors. As three-dimensional numerical flow analysis technology has been significantly developed, the analysis on the train-wind pressure with diverse variables such as train specifications, train speed, tunnel and station configurations, and blockage ratio can be effectively carried out with three-dimensional numerical method. In this study, computational analysis of train-induced wind in a subway tunnel employing the screen doors are carried out by using the three-dimensional numerical method with the model of the moving boundary for the run of trains. While the numerical analysis of train-wind pressure was applied on the one island-type station in the Seoul Subway Line 2, maximum pressure of 494 Pa was estimated on the screen door when two trains pass each other at the speed of 80km/h in the platform.

  • PDF