• Title/Summary/Keyword: 도면분석

Search Result 583, Processing Time 0.027 seconds

An SE-Based System Architecture Process for Submarine's Basic Design (잠수함 기본설계를 위한 SE 기반 시스템 아키텍처 프로세스)

  • Shin, Sung-Chul;Park, Jin-Won;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.91-99
    • /
    • 2019
  • Naval Ships have a number of requirements related to performance. Naval ship acquisition takes a long time from initial planning to delivery, and various products such as drawings and reports are created. In complex systems, such as naval ships, it is difficult to maintain the required traceability through these outputs. The basic design of the ship is an important step to determine the specifications, performance, and equipment of the ship. It is necessary to apply the systematic requirements management process. The basic design manages the requirements in accordance with the systems engineering-based technical review process, but the actual system architecture design process is not presented. The traceability between the requirements and the functional and physical architectures of components is unclear. This paper examined how to design the system architecture required for specification and system design, and the design results were verified using SE-based technical review process for requirements management. A step-by-step process for designing a submarine system architecture is presented and verified using the SE technical review. This facilitates the specification of the requirements and system architecture design, and supports traceability management and verification of the requirements. The proposed process can be applied in various ships including submarines.

Construction of Mine Geospatial Information by Total Station and 3D Laser Scanner (토털스테이션과 3D 레이저 스캐너에 의한 광산공간정보 구축)

  • Park, Joon-Kyu;Lee, Keun-Wang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.520-525
    • /
    • 2019
  • Mines are an important infrastructure for securing resources, but safety problems can arise in the course of operation. Recently, the mining process is very complicated due to the large scale and mechanization. Therefore, it is necessary to construct accurate geospatial information on mine for systematic and safe mine operation. The geospatial information construction using the existing total station has a disadvantage that a lot of work time is required because the target must be collimated and measured. In this study, the data of the mines were acquired with the total station and the 3D laser scanner, and the mine spatial information was constructed by using the shape based registration method. By using the static scanner data of some area applying the reference point surveying result of the total station, it was possible to construct the accurate result on the wide area acquired by the mobile scanner effectively. Also, the accuracy of the constructed geospatial information was evaluated and the deviation of mean 0.083m was shown. Point cloud products constructed through the research can contribute to the efficiency improvement of mine management by enabling quantitative analysis such as visualization of mine shape, distance, area and slope, and automation of drawing creation for cross section shape.

3D Model Generation and Accuracy Evaluation using Unmanned Aerial Oblique Image (무인항공 경사사진을 이용한 3차원 모델 생성 및 정확도 평가)

  • Park, Joon-Kyu;Jung, Kap-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.587-593
    • /
    • 2019
  • The field of geospatial information is rapidly changing due to the development of sensor and data processing technology that can acquire location information. And demand is increasing in various related industries and social activities. The construction and utilization of three dimensional geospatial information that is easy to understand and easy to understand can be an essential element to improve the quality and reliability of related services. In recent years, 3D laser scanners are widely used as 3D geospatial information construction technology. However, 3D laser scanners may cause shadow areas where data acquisition is not possible when objects are large in size or complex in shape. In this study, 3D model of an object has been created by acquiring oblique images using an unmanned aerial vehicle and processing the data. The study area was selected, oblique images were acquired using an unmanned aerial vehicle, and point cloud type 3D model with 0.02 m spacing was created through data processing. The accuracy of the 3D model was 0.19m and the average was 0.11m. In the future, if accuracy is evaluated according to shooting and data processing methods, and 3D model construction and accuracy evaluation and analysis according to camera types are performed, the accuracy of the 3D model will be improved. In the point cloud type 3D model, Cross section generation, drawing of objects, and so on, it is possible to improve work efficiency of spatial information service and related work.

A Study on Historical Research of Archetype of Kyeong Ju Castle (경주읍성 성곽시설의 원형고증에 관한 연구)

  • Kim, Hong Gon;Kim, Young Mo
    • Korean Journal of Heritage: History & Science
    • /
    • v.43 no.2
    • /
    • pp.4-39
    • /
    • 2010
  • The purpose of this study is to examine the archetype of the Gyeongju Castle walls and the facilities around it to bring together previous studies and identify the specific scale and structure of the archetype. The findings can be summarized as follows. First, we verified the exact location and dimensions of the castle through an over-lay of land registration maps from the Japanese colonial period, land registration maps from the present day, cadastral maps, and excavation records. Second, the dimension of the rampart and fort of the castle were discovered by combining and analyzing historical evidence, modern research data, historical site studies from the Japanese colonial era, and maintenance records. Third, the historical records related to the yeojang (rampart sub-wall) formats in the Joseon Dynasty were used to examine the archetype of the yeojang. This study led to the discovery of the archetype of the Gyeongju castle yeojang in the early stage of King Munjong's reign (1451), and the archetype created after the Japanese Invasion (16th century). And finally, although most of the rampart is not present, the structure of the castle can be estimated based on historical research, and research materials modern and contemporary(excavation conservation field survey). In addition, this study presented a archetype restoration plan for each site, to be used as foundational data for future restoration projects.

A Study on the Prediction of the Construction Cost in Planning Stage of Local Housing Union Project (지역주택조합사업 기획단계의 공사비 예측에 관한 연구)

  • Lee, Jin-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.653-659
    • /
    • 2018
  • The accurate prediction of construction cost is a key factor in a project's success. However, it is hard to predict the construction costs in the planning stages rapidly and precisely when drawings, specifications, construction cost calculation statements are incomplete, among other factors. Accurate construction-cost prediction in the planning stage of a project is also important for project feasibility studies and successful completion. Therefore, various techniques have been applied to accurately predict construction costs at an early stage when project information is limited. There are many factors that affect the construction cost prediction. This paper presents a construction-cost prediction method as multiple regression model with seven construction factors as independent variables. The method was used to predict the construction cost of a local housing union project, and the error rate was 4.87%. It is not possible to compare the cost of the project at the planning stage of the local housing union project, but it has high prediction accuracy compared to the unit price of an existing unit area. It is likely to be applied in construction-cost calculation work and to contribute to the establishment of the budget for the local housing union project.

A Measure of Landscape Planning and Design Application through 3D Scan Analysis (3D 스캔 분석을 통한 전통조경 계획 및 설계 활용방안)

  • Shin, Hyun-Sil
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.36 no.4
    • /
    • pp.105-112
    • /
    • 2018
  • This study aims to apply 3D scanning technology to the field of landscape planning design. Through this, 3D scans were conducted on Soswaewon Garden and Seongrakwon Gardens to find directions for traditional landscape planning and designs. The results as follows. First, the actual measurement of the traditional garden through a 3D scan confirmed that a precise three-dimensional modeling of ${\pm}3-5mm$ error was constructed through the merging of coordinate values based on point data acquired at each observation point and postprocessing. Second, as a result of the 3D survey, the Soswaewon Garden obtained survey data on Jewoldang House, Gwangpunggak Pavilion, the surrounding wall, stone axis, and Aeyangdan wall, while the Seongnakwon Garden obtained survey data on the topography, rocks and waterways around the Yeongbyeokji pond area. The above data have the advantage of being able to monitor the changing appearance of the garden. Third, spatial information developed through 3D scans could be developed with a three-dimensional drawing preparation and inspection tool that included precise real-world data, and this process ensured the economic feasibility of time and manpower in the actual survey and investigation of landscaping space. In addition, modelling with a three-dimensional 1:1 scale is expected to be highly efficient in that reliable spatial data can be maintained and reprocessed to a specific size depending on the size of the design. In addition, from a long-term perspective, the deployment of 3D scan data is easy to predict and simulate changes in traditional landscaping space over time.

Derivation of a Verification Formula for the Dose Rate Contributing to the Maze Door of the 6 MV Treatment Room (6 MV 치료실의 미로 도어에 기여하는 선량률의 검증식 유도)

  • Park, Cheol Seo;Kim, Jong Eon;Kang, Eun Bo
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.1
    • /
    • pp.85-91
    • /
    • 2021
  • The purpose of this study is to derive an equation to verify the accuracy of the dose rate for each component calculated at the measurement point outside the maze door when designing the maze door of 6 MV X-ray beam. Based on the component-specific dose rate calculation formula for the measurement point outside the maze door described in NCRP Report 151 and IAEA Safety Report Series 47, the dose rate calculation formula for each component when applying the values of the drawing-based parameters and the dose rate calculation formula for each component when applying the values of conservative parameters are derived. From the two dose rate calculation formulas for each component, the dose rate verification formula for each component at the measurement point outside the maze door was derived. The resulting dose rate verification formula for each component at the measurement point outside the maze door can be compared and analyzed whether the dose rate for each component at the measurement point outside the maze door calculated by the designer falls within the range of the dose rate obtained from the derived dose rate verification formula for each component. This verification formula is considered to be practically useful in verifying the accuracy of the dose rate for each component calculated by the designer.

A Study on Supporting Design Decision Making in Office Building Remodeling Projects by Introducing Mixed Reality (혼합현실 도입 오피스 건물 리모델링 프로젝트 설계 의사결정 지원)

  • Han, Mooyeul;Baek, Kwanyup;Lee, Kyung-Tae;Ko, Seonju;Kim, Ju-Hyung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.1
    • /
    • pp.3-12
    • /
    • 2021
  • In the remodeling projects, clients without architectural expertise have limitations in presenting requirements accurately. In some cases, designers and contractors may not recognize their demands exactly, and deliver final products that are different from the clients' intentions. 3D modeling visualizing final products in previous has been regarded as a solution to enhance understanding and communication. However, this approach has the limitation that the final results are presented as a virtual outputs. In the remodeling project, an alternative, mixed-reality, is likely to reinforce the reality as it enables to present remain structure and the parts to be built together. This paper examines the mixed reality as a solution to support decision making of clients and practitioners in remodeling projects. The examinations is conducted in high-rise office remodeling projects by means of action-research. Clients and practitioners, overview product models presented in the format of 2D drawings, BIM and mixed reality asked to evaluate the effectiveness of each methods in 12 standards. The results have shown that mixed reality has improved the sense of reality, making it easier to predict results, but recognizing patterns is difficult in some areas such as the floor, and it caused dizziness.

Developing the District Unit Plan Simulation using Procedural Modeling (절차적 모델링을 활용한 지구단위계획 시뮬레이션 개발)

  • Jun, Jin Hwan;Kim, Chung Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.546-559
    • /
    • 2021
  • This research aimed to develop the district unit plan simulation using procedural modeling based on shape grammar. For this, Esri's CityEngine 2020.0 was selected as a main development tool, and Inside Commercial Area in Bangi-dong, Songpa-gu, Seoul as the research site where about 25% of the total area was developed over the past five years. Specifically, the research developed the simulation through the following three phases of Data-Information-Knowledge after selecting necessary parameters. In the Data phase, 2 and 3 dimensional data were obtained by utilizing data sharing platforms. In the next Information phase, the acquired data were generated into various procedural models according to the shape grammar, and the 2D and 3D layers were then integrated using relevant applications. In the final Knowledge phase, three-dimensional spatial analysis and storytelling contents were produced based on the integrated layer. As a result, the research suggests the following three implications for the simulation development. First, data accuracy and improvement of sharing platforms are needed in order to effectively carry out the simulation development. Second, the guidelines for district unit plans could be utilized and developed into shape grammar for procedural modeling. Third, procedural modeling is expected to be used as an alternative tool for communication and information delivery.

Slope Stability for Bridge Access Road on Sedimentary Rocks using Geological Cross Sections (지질단면을 이용한 교량 접속도로 퇴적암 비탈면의 안정성 검토 연구)

  • Ihm, Myeong Hyeok
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.507-512
    • /
    • 2022
  • The subjects of the study are the sedimentary rock slope of the Mesozoic Gyeongsang Supergroup, which has a high risk of failure. The rocks of the slope shall be sandstone, siltstone and dacite, and discontinuities shall develop beddings, shear joints, extension joints, and dacite dyke boundary planes. The type and scale of failure varies depending on the type of rock and the strike/dip of the discontinuities, but the planar failure prevails. Based on the face-mapping data, SMR, physical and mechanical testing of rocks, the critical equilibrium analysis, all representative sections required a countermeasure method because the acceptable safety factor during dry and rainy seasons were far below Fs=1.5 and Fs=1.2. After applying the countermeasure method, both the dry and wet conditions of the slope exceeded the allowable safety factor. In particular, the face-mapping data of the slope-face, the geological cross-sections of several representative sections perpendicular to the slope-face, and the critical equilibrium analysis and the presentation of countermeasure methods that have been reviewed based on them are expected to be reasonable tools for the slope stability.