• Title/Summary/Keyword: 도로 주행

Search Result 1,520, Processing Time 0.028 seconds

Detection Algorithm of Road Damage and Obstacle Based on Joint Deep Learning for Driving Safety (주행 안전을 위한 joint deep learning 기반의 도로 노면 파손 및 장애물 탐지 알고리즘)

  • Shim, Seungbo;Jeong, Jae-Jin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.2
    • /
    • pp.95-111
    • /
    • 2021
  • As the population decreases in an aging society, the average age of drivers increases. Accordingly, the elderly at high risk of being in an accident need autonomous-driving vehicles. In order to secure driving safety on the road, several technologies to respond to various obstacles are required in those vehicles. Among them, technology is required to recognize static obstacles, such as poor road conditions, as well as dynamic obstacles, such as vehicles, bicycles, and people, that may be encountered while driving. In this study, we propose a deep neural network algorithm capable of simultaneously detecting these two types of obstacle. For this algorithm, we used 1,418 road images and produced annotation data that marks seven categories of dynamic obstacles and labels images to indicate road damage. As a result of training, dynamic obstacles were detected with an average accuracy of 46.22%, and road surface damage was detected with a mean intersection over union of 74.71%. In addition, the average elapsed time required to process a single image is 89ms, and this algorithm is suitable for personal mobility vehicles that are slower than ordinary vehicles. In the future, it is expected that driving safety with personal mobility vehicles will be improved by utilizing technology that detects road obstacles.

Issue-Tree and QFD Analysis of Transportation Safety Policy with Autonomous Vehicle (Issue-Tree기법과 QFD를 이용한 자율주행자동차 교통안전정책과제 분석)

  • Nam, Doohee;Lee, Sangsoo;Kim, Namsun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.4
    • /
    • pp.26-32
    • /
    • 2016
  • An autonomous car(driverless car, self-driving car, robotic car) is a vehicle that is capable of sensing its environment and navigating without human input. Autonomous cars can detect surroundings using a variety of techniques such as radar, lidar, GPS, odometry, and computer vision. Advanced control systems interpret sensory information to identify appropriate navigation paths, as well as obstacles and relevant signage. Autonomous cars have control systems that are capable of analyzing sensory data to distinguish between different cars on the road, which is very useful in planning a path to the desired destination. An issue tree, also called a logic tree, is a graphical breakdown of a question that dissects it into its different components vertically and that progresses into details as it reads to the right.Issue trees are useful in problem solving to identify the root causes of a problem as well as to identify its potential solutions. They also provide a reference point to see how each piece fits into the whole picture of a problem. Using Issue-Tree menthods, transportation safety policies were developed with autonompus vehicle in mind.

Analysis of Driving Characteristics of Elderly Drivers on Roads Using Vehicle Simulator (차량 시뮬레이터를 이용한 연속류 도로의 고령운전자 주행특성 분석)

  • LEE, GEUN-HEE;BAE, GI-MOK
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.1
    • /
    • pp.146-159
    • /
    • 2021
  • vehicle simulator as part of an empirical analysis the driving characteristics of elderly drivers. To this end, the driving characteristics of the elderly driver from previous study review. he driving characteristics of the elderly the driving elderly driver and general driverIn summarizing these experimental results, the -test showed different driving characteristics from general drivers in all items except for one side of the lane, such as driving speed and driving operation (brake, throttle, steering operation) at a significance level of 95%. Second, when changing lanes, it was difficult for elderly driver to maintain speed and secure an appropriate distance between carslderly driver changed lanes even in inappropriate situations (short distances between cars). Third, in unexpected situation, elderly drivers needed more distance and time.

A Study of the DSSAD Data Elements Derivation through Autonomous Driving Data Analysis on Expressways (자동차 전용도로 자율주행 데이터 분석을 통한 DSSAD 기록항목 도출)

  • Seunghwa Hyun;Jinwoo Son;Youngchul Oh;Byungyong You
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.3
    • /
    • pp.97-106
    • /
    • 2024
  • The Data Storage System for Automated Driving(DSSAD) is a system that records driving information of Lv.4 or higher autonomous vehicles and is different from EDR that records car information in emergency situations. The study of DSSAD recordings is important for responding to various events that may occur in the future commercialization of Lv.4 autonomous vehicles. Therefore, in this study, we conducted a expressway automated driving demonstration and analyzed the collected data to derive the recording elements of DSSAD. During our two-year demonstration of autonomous driving on expressways, we collected and analyzed instances of disengagement. Our findings indicate that 51.6% of disengagement on expressways occurred during lane changes. From the study, we have identified DSSAD record elements for analyzing disengagement situations. Furthermore, implications of future research direction of disengagement analysis were presented.

Road Sign Detection with Weather/Illumination Classifications and Adaptive Color Models in Various Road Images (날씨·조명 판단 및 적응적 색상모델을 이용한 도로주행 영상에서의 이정표 검출)

  • Kim, Tae Hung;Lim, Kwang Yong;Byun, Hye Ran;Choi, Yeong Woo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.11
    • /
    • pp.521-528
    • /
    • 2015
  • Road-view object classification methods are mostly influenced by weather and illumination conditions, thus the most of the research activities are based on dataset in clean weathers. In this paper, we present a road-view object classification method based on color segmentation that works for all kinds of weathers. The proposed method first classifies the weather and illumination conditions and then applies the weather-specified color models to find the road traffic signs. Using 5 different features of the road-view images, we classify the weather and light conditions as sunny, cloudy, rainy, night, and backlight. Based on the classified weather and illuminations, our model selects the weather-specific color ranges to generate Gaussian Mixture Model for each colors, Green, Yellow, and Blue. The proposed method successfully detects the traffic signs regardless of the weather and illumination conditions.

고속주행 타이어에 대하여

  • Baek, Bong-Gi
    • The tire
    • /
    • s.13
    • /
    • pp.5-11
    • /
    • 1968
  • 도로사정의 개선에 따라 우리 나라의 자동차 사용조건은 저속, 과적, 험로라고 일컬어지는 한국적인 조건에서 고속, 정량적재 및 포장도로의 서구조건으로 이행하고 있으며 특히 최근에 경부간 고속자동차도로가 일부 착수되고 있다. 이 도로의 설계속도는 80km~120km의 고속으로서 종래 험로에만 대부분 주행해 왔던 우리 나라의 타이어는 고속이란 새로운 사용조건을 맞이하게 되었다. 여기서는 주로 고속타이어의 성능 및 고속을 극복할 수 있는 타이어의 성능에 대하여 개괄적으로 설명키로 한다.

  • PDF

Study on Establishment of Development Strategy for K-City Based on Analysis of Domestic and Overseas Automated Vehicle Testbeds (국내외 자율주행차 테스트베드 분석 기반 K-City 발전 전략 수립에 관한 연구)

  • Kim, Yejin;Park, Sangmin;Kim, Inyoung;Ko, Hangeom;Cho, Seongwoo;Yun, llsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.4
    • /
    • pp.28-46
    • /
    • 2021
  • 85-90% of the causes of traffic accidents are human factors, and autonomous vehicles with little free running distance can be an alternative to prevent traffic accidents caused by human factors. However, securing safety of autonomous vehicles should be preceded in order to reduce traffic accident damage through the introduction of autonomous vehicles. Therefore, it is necessary to verify whether the vehicle can respond appropriately to changes in the road and traffic environment through repeated and reproduced test runs in an environment similar to the actual road. In this study, K-City's development strategies for upgrading, differentiating, and systematic development were established by comparing and analyzing the current status of domestic and foreign testbeds and business environment analysis. Furthermore, we derive challenge tasks to achieve each strategy.

Analysis of the Effects of the Truck Platooning Using a Meta-analysis (메타분석을 이용한 화물차 군집주행의 효과 분석)

  • Kim, Yejin;Jeong, Harim;Ko, Woori;Park, Joong-gyu;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.76-90
    • /
    • 2022
  • The platooning refers to a form in which one or more following vehicles along the path of the leading vehicle(directly driven by the driver) drive in one platoon using V2V, V2I communication and vehicle-mounted sensor. Platooning has emerged in line with the increasing demand for cargo volume and advanced transportation logistics systems, and is expected to have effects such as increasing capacity, reducing labor costs, and reducing fuel consumption. However, compared to general passenger cars, research on autonomous driving of trucks and verification of their effects are insufficient. Therefore, in this study, meta-analysis was conducted on the theme of the effect of truck platooning, and the results of existing studies related to platooning effects were integrated into one reliable, generalized, and objective summary estimate. In conclusion, it was analyzed that the introduction of truck platooning would have an effect of 13.93% increase in capacity, 38.76% decrease in conflict, and 8.13% decrease in fuel consumption.