• 제목/요약/키워드: 도로 노면 파손 탐지

검색결과 9건 처리시간 0.021초

수도 레이블을 활용한 준지도 학습 기반의 도로노면 파손 탐지 (Road Surface Damage Detection Based on Semi-supervised Learning Using Pseudo Labels)

  • 전찬준;류승기
    • 한국ITS학회 논문지
    • /
    • 제18권4호
    • /
    • pp.71-79
    • /
    • 2019
  • 의미론적 분할 형태로 합성곱 신경망을 구성하여 도로노면의 파손을 탐지하는 연구가 진행되고 있다. 이러한 합성곱 신경망 형태의 모델을 생성하기 위해서는 입력 이미지와 이에 상응한 레이블된 이미지 데이터셋으로 수집해야 하고, 이러한 과정에서는 굉장히 많은 시간과 비용이 발생하게 된다. 본 논문에서는 이러한 작업을 완화하기 위하여 수도 레이블링을 활용한 준지도 학습 기반의 도로노면 파손 탐지 기술을 제안하고자 한다. 레이블된 데이터셋과 레이블되지 않은 데이터셋을 적절하게 혼합하여 도로노면 파손을 탐지하는 모델을 업데이트하고, 이를 레이블된 데이터셋만을 활용한 기존 모델과 성능을 비교한다. 주관적인 성능결과, 민감도 부분에서는 조금 저하된 성능을 보였지만, 정밀도 부분에서는 대폭 성능 향상이 있었으며, 최종적으로 $F_1-score$ 또한 높은 수치로 평가되었다.

적대적 학습을 이용한 도로 노면 파손 탐지 알고리즘 (Detection Algorithm of Road Surface Damage Using Adversarial Learning)

  • 심승보
    • 한국ITS학회 논문지
    • /
    • 제20권4호
    • /
    • pp.95-105
    • /
    • 2021
  • 도로 노면 파손 탐지는 쾌적한 주행 환경과 안전사고의 예방을 위해 필요하다. 도로 관리 기관은 자동화 기술 기반의 검사 장비와 시스템을 활용하고 있다. 이러한 자동화 기술 중에서도 도로 노면의 파손을 탐지하는 기술은 중요한 역할을 수행한다. 최근 들어 딥러닝을 이용한 기술에 대한 연구가 활발하게 진행 중이다. 이러한 딥러닝 기술 개발을 위해서는 도로 영상과 라벨 영상이 필요하다. 하지만 라벨 영상을 확보하기 위해서는 많은 시간과 노동력이 요구된다. 본 논문에서는 이러한 문제를 해결하기 위하여 준지도 학습 기법 중 하나인 적대적 학습 방법을 제안했다. 이를 구현하기 위해서 5,327장의 도로 영상과 1,327장의 라벨 영상을 사용하여 경량화 심층 신경망 모델을 학습했다. 그리고 이를 400장의 도로 영상으로 실험한 결과 80.54%의 mean intersection over union과 77.85%의 F1 score를 갖는 모델을 개발하였다. 결과적으로 라벨 영상 없이 도로 영상만을 학습에 추가하여 인식 성능을 향상시킬 수 있는 기술을 개발하였고, 향후 도로 노면 관리를 위한 기술로 활용되길 기대한다.

Fast R-CNN을 이용한 객체 인식 기반의 도로 노면 파손 탐지 기법 (Road Surface Damage Detection based on Object Recognition using Fast R-CNN)

  • 심승보;전찬준;류승기
    • 한국ITS학회 논문지
    • /
    • 제18권2호
    • /
    • pp.104-113
    • /
    • 2019
  • 도로 관리 주체는 도로 파손을 보수하기 위해 적지 않은 비용을 투입한다. 이러한 파손은 자연 요인과 노후화로 인하여 필연적으로 발생을 하는데, 효율적인 보수를 위한 유지보수 기술이 필요하다. 이런 수요에 대응하기 위해 여러 가지 기술들이 개발되고 적용되고 있지만, 최근 들어서는 차량용 블랙박스 형태로 수집한 영상 정보를 바탕으로 도로 노면 파손 유지 보수기술이 개발되고 있다. 이 파손 영역을 추출하는 방법에는 여러 가지가 있지만, 본 논문에서는 최근 활발히 연구되고 있는 심층 신경망 구조의 영상인식 기술에 대해 논하고자 한다. 특히 영역 기반의 합성곱 알고리즘을 이용하여 영상 내에서 도로 파손 유무와 그 영역을 추정할 수 있는 새로운 심층 신경망을 소개한다. 이를 개발하기 위해 실제 주행을 통해서 600여장의 영상 데이터를 수집하였고, 이를 활용하여 학습을 수행하였다. 그 결과 기존 모델과 성능을 비교하여 10.67% 향상된 신경망을 개발하였다.

주행 안전을 위한 joint deep learning 기반의 도로 노면 파손 및 장애물 탐지 알고리즘 (Detection Algorithm of Road Damage and Obstacle Based on Joint Deep Learning for Driving Safety)

  • 심승보;정재진
    • 한국ITS학회 논문지
    • /
    • 제20권2호
    • /
    • pp.95-111
    • /
    • 2021
  • 인구의 감소 및 고령화 사회가 진행되면서 운전자의 평균 연령은 높아지게 된다. 그에 따라 잠재적인 사고의 위험성이 높은 고령 운전자들은 자율 주행형 개인 이동체가 필요하게 된다. 이러한 이동체가 도로 주행 중에 안전성을 확보하기 위하여 여러 장애물에 대응할 기술이 요구된다. 그 중에서도 주행 중에 마주할 수 있는 차량, 자전거, 사람과 같은 동적 장애물뿐만 아니라 도로 노면의 불량 상태와 같은 정적 장애물을 인식하는 기술이 가장 우선적으로 필요하다. 이를 위해서 본 논문에서는 두 종류의 장애물을 동시에 탐지할 수 있는 심층 신경망 알고리즘을 제안했다. 이 알고리즘을 개발하기 위해서 1,418장의 영상을 이용하여 7종의 동적 장애물에 표기한 annotation data와 도로 노면 파손을 표시한 label 영상을 확보했다. 이를 이용하여 학습한 결과, 46.22%의 평균 정확도로 동적 장애물을 탐지하고 74.71%의 mean intersection over union으로 도로 노면 파손을 탐지했다. 또한 한 장의 영상을 처리하는데 평균 소요시간은 89ms로 일반 차량보다 느린 개인 이동 차량에 사용하기 적합한 알고리즘을 개발했다. 향후 주행 중 마주할 있는 도로 장애물을 탐지하는 기술을 활용하여 개인 이동 차량의 주행 안전성이 향상되길 기대한다.

도로 노면 파손 탐지를 위한 배경 객체 인식 기반의 지도 학습을 활용한 성능 향상 알고리즘 (Performance Enhancement Algorithm using Supervised Learning based on Background Object Detection for Road Surface Damage Detection)

  • 심승보;전찬준;류승기
    • 한국ITS학회 논문지
    • /
    • 제18권3호
    • /
    • pp.95-105
    • /
    • 2019
  • 최근 들어 도로 노면 파손의 위치 정보를 수집하기 위한 영상 처리 기술에 대한 연구가 활발히 진행되고 있다. 대표적으로 차량에 탑재가 가능한 스마트폰이나 블랙박스를 통해 영상을 얻고 이를 영상처리 알고리즘을 사용하여 인식하는 기술이 주로 사용된다. GPS 모듈과 연계하여 실제 파손 위치를 파악할 때 가장 중요한 기술은 영상 처리 알고리즘인데, 근래에는 대부분 인공지능을 통한 알고리즘이 연구 주제로 주목받고 있다. 이와 같은 맥락에서 본 연구에서도 영역 기반의 합성곱 방식 계열의 객체인식 (Object Detection) 방법을 사용한 인공지능 영상 처리 알고리즘에 대하여 논의하고자 한다. 도로 노면 파손 객체 인식 성능을 향상시키기 위하여 도로 노면 파손 영상 600여 장과 일반적인 도로 주행 영상 1500여 장으로 학습 데이터베이스를 구성하였다. 또한 배경 객체 인식 방법을 적용한 지도 학습을 수행하여 도로 노면 파손의 오탐을 감소시켰다. 그 결과 동일한 테스트용 데이터베이스를 통해 알고리즘의 인식 성능을 mAP 평균값 기준 9.44%만큼 향상시킨 새로운 방법을 소개하고자 한다.

도로 노면 파손 인식을 위한 Multi-scale 학습 방식의 암호화 형식 의미론적 분할 알고리즘 (Encoder Type Semantic Segmentation Algorithm Using Multi-scale Learning Type for Road Surface Damage Recognition)

  • 심승보;송영은
    • 한국ITS학회 논문지
    • /
    • 제19권2호
    • /
    • pp.89-103
    • /
    • 2020
  • 고령화 사회에 접어들면서 거동이 어려운 장애인과 고령자의 개인 교통수단에 대한 수요가 증가하고 있다. 실제로 2017년 기준 전국 전동보장구 보급수는 9만여 대로 지속해서 증가하는 추세다. 하지만 장애인 및 고령자의 판단 능력과 조정 능력은 정상인보다 상대적으로 차이가 있는 관계로 주행 중 사고 발생의 가능성이 크다. 다양한 사고의 원인 중 하나는 도로 노면상태의 불균형으로 인해 개인 이동 수단 조향 제어의 간섭이다. 본 논문에서는 이 같은 사고를 예방하고자 도로 노면 상태를 고속으로 인지할 수 있는 암호화 형식 의미론적 분할 알고리즘을 소개한다. 이를 위하여 도로 노면 파손이 포함된 1,500여 장의 학습용 데이터와 150여 장의 테스트용 데이터를 새롭게 구성하였다. 그리고 이를 활용하여 기존의 Encoder와 Decoder 단계로 구성된 Auto-encoder 방식과 달리 Encoder 단계로 이루어진 심층 신경망을 제안하였다. 이 심층 신경망은 기존의 방식과 비교했을 때 평균 정확도(Mean Accuracy)는 4.45% 증가하였고 파라미터는 59.2% 감소하였으며 연산 속도는 11.9% 향상되었다. 이 같은 고속 알고리즘을 활용하여 안전한 개인 이동 수단이 확대 적용되길 기대한다.

도로의 파손 상태를 자동관리하기 위한 동영상 기반 실시간 포트홀 탐지 시스템 (Real Time Pothole Detection System based on Video Data for Automatic Maintenance of Road Surface Distress)

  • 조영태;류승기
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제22권1호
    • /
    • pp.8-19
    • /
    • 2016
  • 도로의 결빙과 해빙으로 도로면의 수축과 팽창이 반복되어 도로면에서 침투한 수분이 포장면의 결합력을 약화시켜 노면홈(포트홀)을 발생시킨다. 현재의 포트홀 조사는 현장에서 육안 조사하고 기록하는 수동적인 방식으로 매년 수 만개소의 포트홀이 발생하는 것에 어려움이 발생하고 있다. 포트홀 정보를 자동으로 수집하기 위해 최근까지 가속도 센서를 이용한 기술과 레이저 스캐닝을 이용한 기술이 많이 연구되었다. 하지만, 가속도 센서 기반 기술은 낮은 인식률과 제한된 센싱 영역의 문제가 있고, 레이저 스캐닝 기반 기술은 비용이 너무 큰 문제가 있다. 따라서, 본 논문에서는 대중적으로 사용하는 차량용 블랙박스 카메라를 이용한 자동 포트홀 탐지 기술을 제안한다. 일반적으로 차량용 블랙박스 카메라에 탑재한 연산프로세서는 낮은 컴퓨팅 능력을 가지므로 포트홀 탐지 알고리즘을 그게 맞게 설계할 필요가 있다. 설계된 알고리즘을 블랙박스에 내장하여 도로 주행실험을 실시하며, 포트홀 탐지 성능을 중심으로 한 실험결과는 포트홀 탐지 정밀도, 민감도 등의 지표를 토대로 분석하고, 실시간 포토홀 탐지 기술의 현장 적용성을 확인한다.

완전 합성곱 신경망을 활용한 자동 포트홀 탐지 기술의 개발 및 평가 (Development and Evaluation of Automatic Pothole Detection Using Fully Convolutional Neural Networks)

  • 전찬준;심승보;강성모;류승기
    • 한국ITS학회 논문지
    • /
    • 제17권5호
    • /
    • pp.55-64
    • /
    • 2018
  • 운전자의 안전사고에 직접적인 원인이 되고, 차량 파손을 유발시켜 재산상의 피해를 발생시키고 있는 포트홀을 완전 합성곱 신경망 기반의 자동으로 탐지하는 기법을 본 논문에서는 제안한다. 먼저, 실제 국내 도로를 주행하면서 차량에 설치된 카메라를 통하여 학습 데이터셋을 수집하고, 완전 합성곱 신경망 구조를 활용하여 의미론적 분할 형태로 신경망을 학습하였다. 어두운 환경에서 강건한 성능을 보이기 위하여 학습 데이터셋을 밝기에 따라서 증강하여 총 30,000장의 이미지를 학습하였다. 또한, 제안된 자동 포트홀 탐지 기술의 성능을 검증하기 위하여 총 450장의 평가 DB를 생성하였고, 총 네 명의 전문가가 각각의 이미지를 평가하였다. 평가 결과, 제안된 포트홀 탐지 기술은 높은 민감도 수치를 나타나는 것으로 평가 되었으며, 이는 정탐에서 강건한 성능을 보이는 것으로 해석 가능하다.

포트홀 탐지 정확도 향상을 위한 Saliency Map 기반 포트홀 탐지 알고리즘 (Pothole Detection Algorithm Based on Saliency Map for Improving Detection Performance)

  • 조영태;류승기
    • 한국ITS학회 논문지
    • /
    • 제15권4호
    • /
    • pp.104-114
    • /
    • 2016
  • 포트홀은 차량파손과 교통사고 유발 등의 사회문제를 유발시키고 있다. 포트홀을 효율적으로 관리하기 위해서는 빠르게 포트홀을 찾아내는 기술이 가장 중요하다. 기존의 포트홀 탐지 기법은 민원에 의한 수동식 신고방식을 사용하고 있어, 포트홀로 인해 발생하는 문제를 사전에 예방하지 못하고 있다. 최근 포트홀을 저비용으로 빠르게 탐지하기 위하여 영상 카메라를 이용한 연구가 많이 진행되고 있다. 본 논문에서는 사전에 연구되었던 포트홀 탐지 알고리즘의 탐지정확도를 개선하기 위한 Saliency Map 기반의 알고리즘을 제안한다. 기존 알고리즘은 포트홀이 그림자와 겹쳐있거나 포트홀의 내부 모양이 주변 도로노면과 비슷한 형태를 가지는 등의 복잡한 환경에서 포트홀을 탐지하지 못하는 문제를 가지고 있다. 이러한 문제를 해결하기 위하여 제안하는 알고리즘은 Saliency Map 알고리즘을 이용하여 보다 정확한 포트홀 후보 영역을 찾는다. 제안 알고리즘은 포트홀 후보영역 추출부와 결정부로 구성되며, 실험을 통하여 기존 알고리즘보다 더 높은 탐지 정확도를 가짐을 보인다.