컴퓨터 비전 시스템의 발달로 보안, 생체인식, 의료영상, 자율주행 등의 분야에 많은 발전이 있었다. 자율주행 분야에서는 특히 딥러닝을 이용한 객체인식, 탐지 기법이 주로 사용되는데, 자동차가 갈 수 있는 영역을 판단하기 위한 도로영역 인식이 특히 중요한 문제이다. 도로 영역은 일반적인 객체탐지에서 활용되는 사각영역인식과는 달리 비정형적인 형태를 띠므로, ROI 기반의 객체인식 구조는 적용할 수 없다. 본 논문에서는 Semantic segmentation 기법을 사용한 비정형적인 도로영역 인식에 맞는 심층 신경망 구조를 제안한다. 또한 도로영역에 특화된 네트워크 구조인 Multi-scale semantic segmentation 기법을 사용하여 성능이 개선됨을 입증하였다.
야외에서 인지되는 자연 경치는 다양한 개체, 빛의 산란, 또는 변화를 주는 많은 요소들 때문에 컴퓨터 영상처리에서 인식하기가 쉽지 않다. 본 논문에서는 다층 인지 신경망을 이용하여 도로가 포함된 야외영상에 나타나는 개체들을 인식하는 방법을 연구하였다. 자연 영상을 영역화한 후, 각각의 영역들에 대하여 색상과 기하학적인 특성에 근거하여 특성벡터를 추출하고 이를 신경망에 입력하여 각 영역을 구분하는 2단계의 알고리듬을 제안한다. 먼저 야외 영상들을 개선된 영역 확장법과 병합과정에 의하여 개체별로 영역화하였다. 영역화된 연상은 자연 영상과 함께 영상 데이타베이스에 저장되고, 이 자료들을 이용하여 각 영역의 특성벡터를 계산하였다. 이 특성 벡터를 구성된 신경망의 입력층에 전달하면, 각 영역은 27개의 개체 중의 하나로 출력층에서 인식된다. 제안된 방법은 학습에 사용된 데이타, 학스베 사용되지 않은 새로운 데이타, 그리고 모두 합하여 놓은 데이타의 세가지 데이타 군에서 무작위로 선별하여 인식률을 측정하였다. 학습된 데이타에서는 99.4%까지의 인식률을 보여주었고, 학습되지 않은 데이타에 대해서도 최고 89.1%까지의 인식률을 나타내었다. 제안된 방법은 평균적으로 88.1%~97.9%의 인식률을 보여주어 자연 경치의 인식에 신뢰성이 있는 방법으로 사용될 수 있음을 증명하였다.
본 논문은 차량에 설치된 블랙박스 영상으로부터 도로노면에 표시된 방향지시기호를 효율적으로 검출하는 방안을 제안한다. 제안한 연구에서는 원근 효과를 가진 입력영상에서 역원근변환 방법을 통해 원근 효과를 제거한 실세계 좌표로 매핑 한 평면 영상에서 BOF 특징정보 기반의 신경망 인식기를 통해 검출한다. 입력영상에서 역원근변환과 특징정보의 검출 및 인식은 높은 계산량 때문에 실시간 처리가 어려운 점이 있다. 이를 보완하기 위해 제안한 방안에서는 입력영역의 도로노면 방향지시기호 영역의 특징을 분석하여 도로노면 기호가 포함된 후보 ROI영역을 정의하고 후보 ROI영역의 Gray 색상에서 역원근변환을 수행한다. 그리고 각 도로기호 영역들을 실시간 검출 및 인식하기 위해 인식코자 하는 영역 극소 특징벡터를 추출하고 이를 근소화시킨 클래스로 군집화하여 BOF를 생성한 후 이를 활용한 신경망을 통해 검출한다. 제안한 방안을 도로노면 방향지시기호 검출 연구에 적용한 결과, 약 89% 이상 비교적 정확한 검출률을 제시하였으며, 다양한 도로 환경에서도 높은 검출률을 제시하였다. 따라서 제안한 방안을 안전운전지원시스템을 위한 보다 정확한 도로정보 제공시스템에 적용 가능함을 보인다.
비젼 시스템을 바탕으로 한 무인 주행 시스템은 카메라로부터 입력된 영사에서 도로와 비 도로를 적절히 인식하여 그것을 바탕으로 주행을 위한 여러 장치들을 제어하는 시스템이라 할 수 있다. 한편 이와 같이 영상의 인식 결과가 핸들 제어나 속도 제어의 성능을 결정할 때 무엇보다 도로의 환경 변화에 강건한 비젼 시스템의 구현이 요구된다. 본 논문에서는 비젼 시스템과 핸들 제어 시스템 두 부분을 구현하였는데, 비젼 시스템에서는 입력 영상에 대해 학습이 가능한 Multilayer Perceptron(MLP)을 이용하여 도로와 비 도로를 적절한 신뢰도로 나눈 후 피라미드 알고리즘을 거쳐 최종 도로 영역을 추출해 낸다. 핸들 제어를 위해 도로 영역의 외곽선을 모델링한 후 차량의 주행 방향 벡터를 구한다. 그 값이 핸들 제어 시스템에서의 MLP의 입력이 되어 차량의 핸들 각도를 결정하게 된다. 끝으로 옥외 차량 시뮬레이션을 통하여 본 논문에서 제안된 알고리즘의 유용성을 확인한다.
본 논문에서는 칼라분류 및 방향성 에지정보의 클러스터링과 이들의 통합에 의한 새로운 도로영역 및 차선검출 알고리즘을 제안한다. 도로영역 및 차선을 하나의 인식대상 물체로 취급하고, 통계적 파라미터의 반복 최적화에 의한 칼라정보의 클러스터링을 수행해서 검출과 인식을 위한 초기정보로 사용한다. 다음으로, 칼라정보가 갖는 물체인식 의 한계를 개선하기 위해 에지정보를 검출하고, 관심영역(Region Of Interest for Lane Boundary(ROI-LB))의 추출과 ROI-LB 영역에서 방향성 에지정보의 검출과 클러스터링을 수행한다. 칼라분류 및 에지 클러스터링의 결과를 통합해, 이들 각각의 정보가 갖는 특징을 이용함으로서 도로환경에 적합한 도로영역 및 차선을 검출할 수 있도록 한다. 제안방법은 도로와 차선에 관한 파라미터릭 수학적 모델을 사용하지 않고 칼라 및 에지의 클러스터링 정보에 의한 non-parametric 방법으로 다양한 도로 환경에 유연한 대응이 가능한 장점을 갖는다. 본 제안방법의 유효성을 입증하기 위해 상이한 촬상조건 및 도로환경에서의 영상에 대한 실험결과를 제시한다.
본 논문에서는 실제 도로환경의 속도 표지판 영역 추출 및 인식 방법을 제안한다. 화소의 색상정보를 이용하여 속도 표지판 영역을 추출하고 추출된 속도 표지판 영역 안에서 숫자 영역만 다시 추출한다. 표지판의 경사여부를 판단하여 시계방향, 반시계방향으로 각각 표지판을 회전시켜 기울기를 보정한 후 인식을 행함으로써 인식률을 제고한다. 도로환경의 동영상을 대상으로 인식을 행한 결과 일반적인 속도표지판 뿐 아니라 기울어진 환경에서도 매우 강건한 인식 결과를 보인다.
본 논문에서는 효율성 높은 차선 인식을 위한 알고리즘을 제안한다. 입력된 영상을 배경영상과 도로 영상으로 나눈 후 도로영역에서 Hough 변환을 이용하여 차선을 검출하도록 한다. 규정된 도로 규격 정보를 활용하여 한쪽차선만이 인식되더라도 자동차의 차선이탈여부를 검출할 수 있도록 하는 알고리즘을 제안한다. 또한 영상의 잡음을 최소화하기 위한 알고리즘을 적용하여 차선 인식률을 높일 수 있는 방법을 연구한다.
본 논문은 차량에 설치된 블랙박스 영상으로부터 도로 노면에 표시된 방향지시 기호를 효율적으로 검출하는 방안을 제안한다. 차량 내부에 설치된 블랙박스 영상은 카메라의 원근 효과로 인해 방향지시 기호 영역을 올바르게 검출하지 못하는 문제점이 존재한다. 따라서 제안한 연구에서는 원근 효과를 가진 입력 영상에서 역원근 변환 방법을 통해 원근 효과를 제거한 실세계 좌표로 맵핑한 평면 영상에서 방향지시 기호 영역을 신경망 검출기를 통해 검출한다. 입력 영상에서 역 원근 변환은 높은 계산량으로 인해 실시간 처리가 어려운 점이 존재한다. 이를 보완하기 위해 제안한 방안에서는 입력 영역의 도로노면 방향지시 기호 영역의 특징을 분석하여 도로노면 기호가 포함된 후보 ROI영역을 정의하고 후보 ROI 영역의 Gray 색상에서 역원근 변환을 수행한다. 제안한 방안을 도로노면 방향지시 기호 검출 및 인식 연구에 적용한 결과, 약 87% 이상 비교적 정확히 검출율을 제시하였으며, 다양한 도로 환경에서도 높은 검출율을 제시하였다. 따라서 제안한 방안을 운전자의 안전운전지원시스템에 적용함으로써 보다 정확한 도로정보 제공시스템 적용이 가능함을 알 수 있다.
본 논문에서는 실제 도로 환경에서의 실시간 차선 인식 방법을 제안한다. 전방주시카메라를 활용하여 촬영한 입력영상으로부터 도로영역에 해당하는 관심영역을 추출하고 반복적인 평균 명도를 측정하여 이진화함으로써 차선 특징을 검출하고 YCbCr 변환한 영상에 대한 실험 임계값을 적용하여 중앙선의 특징을 검출하였다. 이에 Canny 알고리즘을 이용한 에지 추출로 허프 변환시의 작업량을 최소화하였으며 허프 변환하여 얻은 차선 후보군으로부터 각도를 기반으로 필터링하여 통계적으로 우선순위가 높은 선분을 차선으로 인식하였다. 또한 실제 도로 환경에서 수집한 동영상으로 실험한 결과 강건한 차선 인식률을 보였다.
본 논문은 운전자의 운행 보조 역할로 주행 가능한 차선 영역을 인식하고 추적하는 방법을 제안한다. 주요 주제는 차량 내부의 앞 유리 중앙에 설치된 카메라를 통해 실시간으로 획득한 영상을 기반으로 컴퓨터 비전과 딥 러닝 기술을 활용하여 주행 가능한 도로 영역을 예측하는 심층 기반 네트워크를 설계한다. 본 연구는 YOLOv8 알고리즘을 이용하여 카메라에서 직접 획득한 데이터로 훈련한 새로운 모델을 개발하는 것을 목표한다. 실제 도로에서 자신의 차량의 정확한 위치를 실제 영상과 일치하게 시각화하여 주행 가능한 차선 영역을 표시 및 추적함으로써 운전자 운행의 보조하는 역할을 기대한다. 실험 결과, 대부분 주행 가능한 도로 영역의 추적이 가능했으나 밤에 비가 심하게 오는 경우와 같은 악천후에서 차선이 정확하게 인식되지 않는 경우가 발생하여 이를 해결하기 위한 모델의 성능 개선이 필요하다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.