• 제목/요약/키워드: 도로영역 인식

검색결과 105건 처리시간 0.03초

효율적인 비정형 도로영역 인식을 위한 Semantic segmentation 기반 심층 신경망 구조 (Efficient Deep Neural Network Architecture based on Semantic Segmentation for Paved Road Detection)

  • 박세진;한정훈;문영식
    • 한국정보통신학회논문지
    • /
    • 제24권11호
    • /
    • pp.1437-1444
    • /
    • 2020
  • 컴퓨터 비전 시스템의 발달로 보안, 생체인식, 의료영상, 자율주행 등의 분야에 많은 발전이 있었다. 자율주행 분야에서는 특히 딥러닝을 이용한 객체인식, 탐지 기법이 주로 사용되는데, 자동차가 갈 수 있는 영역을 판단하기 위한 도로영역 인식이 특히 중요한 문제이다. 도로 영역은 일반적인 객체탐지에서 활용되는 사각영역인식과는 달리 비정형적인 형태를 띠므로, ROI 기반의 객체인식 구조는 적용할 수 없다. 본 논문에서는 Semantic segmentation 기법을 사용한 비정형적인 도로영역 인식에 맞는 심층 신경망 구조를 제안한다. 또한 도로영역에 특화된 네트워크 구조인 Multi-scale semantic segmentation 기법을 사용하여 성능이 개선됨을 입증하였다.

신경망을 이용한 도로가 포함된 야외영상 인식 (Recognition of Outdoor Scenery Containing Roads using Neural Network)

  • 이효종
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제28권2호
    • /
    • pp.132-140
    • /
    • 2001
  • 야외에서 인지되는 자연 경치는 다양한 개체, 빛의 산란, 또는 변화를 주는 많은 요소들 때문에 컴퓨터 영상처리에서 인식하기가 쉽지 않다. 본 논문에서는 다층 인지 신경망을 이용하여 도로가 포함된 야외영상에 나타나는 개체들을 인식하는 방법을 연구하였다. 자연 영상을 영역화한 후, 각각의 영역들에 대하여 색상과 기하학적인 특성에 근거하여 특성벡터를 추출하고 이를 신경망에 입력하여 각 영역을 구분하는 2단계의 알고리듬을 제안한다. 먼저 야외 영상들을 개선된 영역 확장법과 병합과정에 의하여 개체별로 영역화하였다. 영역화된 연상은 자연 영상과 함께 영상 데이타베이스에 저장되고, 이 자료들을 이용하여 각 영역의 특성벡터를 계산하였다. 이 특성 벡터를 구성된 신경망의 입력층에 전달하면, 각 영역은 27개의 개체 중의 하나로 출력층에서 인식된다. 제안된 방법은 학습에 사용된 데이타, 학스베 사용되지 않은 새로운 데이타, 그리고 모두 합하여 놓은 데이타의 세가지 데이타 군에서 무작위로 선별하여 인식률을 측정하였다. 학습된 데이타에서는 99.4%까지의 인식률을 보여주었고, 학습되지 않은 데이타에 대해서도 최고 89.1%까지의 인식률을 나타내었다. 제안된 방법은 평균적으로 88.1%~97.9%의 인식률을 보여주어 자연 경치의 인식에 신뢰성이 있는 방법으로 사용될 수 있음을 증명하였다.

  • PDF

원근투영법과 신경망을 이용한 도로노면 방향지시기호 검출 연구 (Detection of Direction Indicators on Road Surfaces Using Inverse Perspective Mapping and NN)

  • 김종배
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제4권4호
    • /
    • pp.201-208
    • /
    • 2015
  • 본 논문은 차량에 설치된 블랙박스 영상으로부터 도로노면에 표시된 방향지시기호를 효율적으로 검출하는 방안을 제안한다. 제안한 연구에서는 원근 효과를 가진 입력영상에서 역원근변환 방법을 통해 원근 효과를 제거한 실세계 좌표로 매핑 한 평면 영상에서 BOF 특징정보 기반의 신경망 인식기를 통해 검출한다. 입력영상에서 역원근변환과 특징정보의 검출 및 인식은 높은 계산량 때문에 실시간 처리가 어려운 점이 있다. 이를 보완하기 위해 제안한 방안에서는 입력영역의 도로노면 방향지시기호 영역의 특징을 분석하여 도로노면 기호가 포함된 후보 ROI영역을 정의하고 후보 ROI영역의 Gray 색상에서 역원근변환을 수행한다. 그리고 각 도로기호 영역들을 실시간 검출 및 인식하기 위해 인식코자 하는 영역 극소 특징벡터를 추출하고 이를 근소화시킨 클래스로 군집화하여 BOF를 생성한 후 이를 활용한 신경망을 통해 검출한다. 제안한 방안을 도로노면 방향지시기호 검출 연구에 적용한 결과, 약 89% 이상 비교적 정확한 검출률을 제시하였으며, 다양한 도로 환경에서도 높은 검출률을 제시하였다. 따라서 제안한 방안을 안전운전지원시스템을 위한 보다 정확한 도로정보 제공시스템에 적용 가능함을 보인다.

무인 주행을 위한 도로 인식 및 핸들 제어 (AUTOMATIC ROAD RECOGNITION AND STEER CONTROL FOR AUTONOMOUS LAND VEHICLE)

  • 정홍;이상우
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1998년도 가을 학술발표논문집 Vol.25 No.2 (2)
    • /
    • pp.497-499
    • /
    • 1998
  • 비젼 시스템을 바탕으로 한 무인 주행 시스템은 카메라로부터 입력된 영사에서 도로와 비 도로를 적절히 인식하여 그것을 바탕으로 주행을 위한 여러 장치들을 제어하는 시스템이라 할 수 있다. 한편 이와 같이 영상의 인식 결과가 핸들 제어나 속도 제어의 성능을 결정할 때 무엇보다 도로의 환경 변화에 강건한 비젼 시스템의 구현이 요구된다. 본 논문에서는 비젼 시스템과 핸들 제어 시스템 두 부분을 구현하였는데, 비젼 시스템에서는 입력 영상에 대해 학습이 가능한 Multilayer Perceptron(MLP)을 이용하여 도로와 비 도로를 적절한 신뢰도로 나눈 후 피라미드 알고리즘을 거쳐 최종 도로 영역을 추출해 낸다. 핸들 제어를 위해 도로 영역의 외곽선을 모델링한 후 차량의 주행 방향 벡터를 구한다. 그 값이 핸들 제어 시스템에서의 MLP의 입력이 되어 차량의 핸들 각도를 결정하게 된다. 끝으로 옥외 차량 시뮬레이션을 통하여 본 논문에서 제안된 알고리즘의 유용성을 확인한다.

  • PDF

칼라분류와 방향성 에지의 클러스터링에 의한 차선 검출 (Detection of Road Lane with Color Classification and Directional Edge Clustering)

  • 정차근
    • 대한전자공학회논문지SP
    • /
    • 제48권4호
    • /
    • pp.86-97
    • /
    • 2011
  • 본 논문에서는 칼라분류 및 방향성 에지정보의 클러스터링과 이들의 통합에 의한 새로운 도로영역 및 차선검출 알고리즘을 제안한다. 도로영역 및 차선을 하나의 인식대상 물체로 취급하고, 통계적 파라미터의 반복 최적화에 의한 칼라정보의 클러스터링을 수행해서 검출과 인식을 위한 초기정보로 사용한다. 다음으로, 칼라정보가 갖는 물체인식 의 한계를 개선하기 위해 에지정보를 검출하고, 관심영역(Region Of Interest for Lane Boundary(ROI-LB))의 추출과 ROI-LB 영역에서 방향성 에지정보의 검출과 클러스터링을 수행한다. 칼라분류 및 에지 클러스터링의 결과를 통합해, 이들 각각의 정보가 갖는 특징을 이용함으로서 도로환경에 적합한 도로영역 및 차선을 검출할 수 있도록 한다. 제안방법은 도로와 차선에 관한 파라미터릭 수학적 모델을 사용하지 않고 칼라 및 에지의 클러스터링 정보에 의한 non-parametric 방법으로 다양한 도로 환경에 유연한 대응이 가능한 장점을 갖는다. 본 제안방법의 유효성을 입증하기 위해 상이한 촬상조건 및 도로환경에서의 영상에 대한 실험결과를 제시한다.

템플릿 매칭과 기울기 보정을 이용한 속도 표지판 인식 (Speed Sign Recognition by using Incline Compensation and Template matching.)

  • 이강호;최우성;이규원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 춘계학술발표대회
    • /
    • pp.82-85
    • /
    • 2009
  • 본 논문에서는 실제 도로환경의 속도 표지판 영역 추출 및 인식 방법을 제안한다. 화소의 색상정보를 이용하여 속도 표지판 영역을 추출하고 추출된 속도 표지판 영역 안에서 숫자 영역만 다시 추출한다. 표지판의 경사여부를 판단하여 시계방향, 반시계방향으로 각각 표지판을 회전시켜 기울기를 보정한 후 인식을 행함으로써 인식률을 제고한다. 도로환경의 동영상을 대상으로 인식을 행한 결과 일반적인 속도표지판 뿐 아니라 기울어진 환경에서도 매우 강건한 인식 결과를 보인다.

비전 센서를 이용한 차선 인식 시스템 개발 (Development of Lane Detection System Using Vision Sensor)

  • 안준식;오태석;김일환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1911-1912
    • /
    • 2008
  • 본 논문에서는 효율성 높은 차선 인식을 위한 알고리즘을 제안한다. 입력된 영상을 배경영상과 도로 영상으로 나눈 후 도로영역에서 Hough 변환을 이용하여 차선을 검출하도록 한다. 규정된 도로 규격 정보를 활용하여 한쪽차선만이 인식되더라도 자동차의 차선이탈여부를 검출할 수 있도록 하는 알고리즘을 제안한다. 또한 영상의 잡음을 최소화하기 위한 알고리즘을 적용하여 차선 인식률을 높일 수 있는 방법을 연구한다.

  • PDF

역원근 변환과 신경망을 사용한 효율적인 도로노면 방향지시기호 검출 연구 (Detection of direction indicators on road surfaces using Inverse Perspective Mapping and NN)

  • 김종배
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 추계학술발표대회
    • /
    • pp.1199-1202
    • /
    • 2014
  • 본 논문은 차량에 설치된 블랙박스 영상으로부터 도로 노면에 표시된 방향지시 기호를 효율적으로 검출하는 방안을 제안한다. 차량 내부에 설치된 블랙박스 영상은 카메라의 원근 효과로 인해 방향지시 기호 영역을 올바르게 검출하지 못하는 문제점이 존재한다. 따라서 제안한 연구에서는 원근 효과를 가진 입력 영상에서 역원근 변환 방법을 통해 원근 효과를 제거한 실세계 좌표로 맵핑한 평면 영상에서 방향지시 기호 영역을 신경망 검출기를 통해 검출한다. 입력 영상에서 역 원근 변환은 높은 계산량으로 인해 실시간 처리가 어려운 점이 존재한다. 이를 보완하기 위해 제안한 방안에서는 입력 영역의 도로노면 방향지시 기호 영역의 특징을 분석하여 도로노면 기호가 포함된 후보 ROI영역을 정의하고 후보 ROI 영역의 Gray 색상에서 역원근 변환을 수행한다. 제안한 방안을 도로노면 방향지시 기호 검출 및 인식 연구에 적용한 결과, 약 87% 이상 비교적 정확히 검출율을 제시하였으며, 다양한 도로 환경에서도 높은 검출율을 제시하였다. 따라서 제안한 방안을 운전자의 안전운전지원시스템에 적용함으로써 보다 정확한 도로정보 제공시스템 적용이 가능함을 알 수 있다.

자율 주행을 위한 실시간 차선 인식 (Real-Time Road Lane Recognition for Autonomous Driving)

  • 황인찬;이봉환;이규원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 춘계학술발표대회
    • /
    • pp.94-97
    • /
    • 2009
  • 본 논문에서는 실제 도로 환경에서의 실시간 차선 인식 방법을 제안한다. 전방주시카메라를 활용하여 촬영한 입력영상으로부터 도로영역에 해당하는 관심영역을 추출하고 반복적인 평균 명도를 측정하여 이진화함으로써 차선 특징을 검출하고 YCbCr 변환한 영상에 대한 실험 임계값을 적용하여 중앙선의 특징을 검출하였다. 이에 Canny 알고리즘을 이용한 에지 추출로 허프 변환시의 작업량을 최소화하였으며 허프 변환하여 얻은 차선 후보군으로부터 각도를 기반으로 필터링하여 통계적으로 우선순위가 높은 선분을 차선으로 인식하였다. 또한 실제 도로 환경에서 수집한 동영상으로 실험한 결과 강건한 차선 인식률을 보였다.

YOLOv8 알고리즘 기반의 주행 가능한 도로 영역 인식과 실시간 추적 기법에 관한 연구 (Research on Drivable Road Area Recognition and Real-Time Tracking Techniques Based on YOLOv8 Algorithm)

  • 서정희
    • 한국전자통신학회논문지
    • /
    • 제19권3호
    • /
    • pp.563-570
    • /
    • 2024
  • 본 논문은 운전자의 운행 보조 역할로 주행 가능한 차선 영역을 인식하고 추적하는 방법을 제안한다. 주요 주제는 차량 내부의 앞 유리 중앙에 설치된 카메라를 통해 실시간으로 획득한 영상을 기반으로 컴퓨터 비전과 딥 러닝 기술을 활용하여 주행 가능한 도로 영역을 예측하는 심층 기반 네트워크를 설계한다. 본 연구는 YOLOv8 알고리즘을 이용하여 카메라에서 직접 획득한 데이터로 훈련한 새로운 모델을 개발하는 것을 목표한다. 실제 도로에서 자신의 차량의 정확한 위치를 실제 영상과 일치하게 시각화하여 주행 가능한 차선 영역을 표시 및 추적함으로써 운전자 운행의 보조하는 역할을 기대한다. 실험 결과, 대부분 주행 가능한 도로 영역의 추적이 가능했으나 밤에 비가 심하게 오는 경우와 같은 악천후에서 차선이 정확하게 인식되지 않는 경우가 발생하여 이를 해결하기 위한 모델의 성능 개선이 필요하다.