• Title/Summary/Keyword: 도로설계 안전성 평가

Search Result 119, Processing Time 0.03 seconds

A Vibration Evaluation and Improvement Scheme for Open Test Blasting (노천시험발파의 진동평가와 개선방안)

  • Kim, Eung-Rok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.310-315
    • /
    • 2017
  • Although studies evaluating the effects of the blasting vibration on the adjacent structures from various angles have continued, cases of securing the safety of the adjacent buildings and researching the proper blasting method for the field condition by analyzing the vibration waveform of the measuring field while performing the open pit blasting are poor. Therefore, it is necessary to present a remedy for blasting pattern selection through test blasting that is appropriate for field conditions, and is economical and efficient. In this study, open pit blasting work was conducted based on the separation distance applied according to the standard blasting method by test blasting and the vibration regulation standard in the road expansion construction site to measure the blasting vibration value, and the vibration prediction equation by blasting methods was examined using a regression analysis computer program to calculate K, N, and R of the confidence level 95%. By setting the blasting allowed vibration standard of the test blasting target area to 0.3cm/sec, and the charring weight and blasting method by the separation distances according to the blasting vibration estimation equation of the open pit blasting guideline and the blasting vibration estimation equation of the test blasting were compared/analyzed, it was possible to identify the factors that increased the working expenses. In addition, the measurement and analysis of the adjacent structures during open pit blasting and the blasting vibration were performed after selecting the most adjacent structure to the open pit blasting spot to analyze the problems on the test blasting procedure and analysis method in the open pit blasting design/construction guidelines, which appeared in the process of completing open pit blasting construction, and a remedy is presented.

Stability analysis of shield tunnel segment lining by field measurement and full scale bending test (실대형 하중재하 시험 및 현장계측을 통한 쉴드터널 세그먼트 안정성 분석)

  • Lee, Gyu-Phil;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.5
    • /
    • pp.611-620
    • /
    • 2019
  • The shield tunnel was mostly applied to cable tunnel with a diameter of 3~4 m, recently 7.8 m diameter shield tunnel was constructed in the lower section of the Incheon International Airport runway and is planning or under construction to roads and railway tunnels in the lower section of the Han River. Segments are also becoming larger as the shield tunnel cross-section increases, which causes a number of problems in the design, construction, and performance evaluation of segments. In this study, segment lining structural safety, criteria for serviceability check considering axial forces and quality control method for approximately 8 m in diameter shield tunnel were reviewed by field measurements and full scale bending test.

Development of a Crash Cushion Using the Frictional and Inertial Energy by Computer Simulation (컴퓨터 시뮬레이션에 의한 관성과 마찰 에너지를 이용하는 충격흡수시설의 개발)

  • Kim, Dong-Seong;Kim, Kee-Dong;Ko, Man-Gi;Kim, Kwang-Ju
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.2
    • /
    • pp.23-30
    • /
    • 2009
  • Crash cushions are protective devices that prevent errant vehicles from impacting on fixed objects. This function is accomplished by gradually decelerating a vehicle to a safe stop in a relatively short distance. Commonly used crash cushions generally employ one of two concepts to accomplish this function. The first concept involves the absorption of the kinetic energy of a moving vehicle by crushable or plastically deformable materials and the other one involves the transfer of the momentum of a moving vehicle to an expendable mass of material located in the vehicle's path. Crash cushions using the first concept are generally referred to as compression crash cushions and crash cushions using the other concept are generally referred to as inertial crash cushion. The objective of this research is the development of a compression-type crash cushion by employing the two concepts simultaneously. To minimize the number of full-scale crash tests for the development of the crash cushion, preliminary design guide considering inertial and frictional energy absorption was constructed and computer simulation was performed. LS-DYNA program, which is most widely used to analyze roadside safety features, was used for the computer simulation. The developed crash cushion satisfied the safety evaluation criteria for various impact conditions of CC2 performance level in the Korean design guide.

Calculation of the Earthquake Vulnerability of the Bridge Foundation Considering the Characteristics of the Ground (지반의 특성을 고려한 교량기초의 지진취약도 산정)

  • Lee, Donggun;Song, Kiil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.2
    • /
    • pp.13-23
    • /
    • 2022
  • The ground-structure interaction of the bridge foundation has been pointed out as a major factor influencing the behavior of the bridge during earthquakes. In this study, the effect of characteristics of ground and bridge foundation on the earthquake vulnerability is investigated. From the pseudo-static analysis, it is confirmed that non-linearity becomes lesser and horizontal load becomes greater when surcharge is considered. It is also found that as the ground worsens and the size of foundation decreases, horizontal load reduces. To derive reasonable structural model for bridge foundation, fragility curve is obtained considering four conditions (fixed condition, equivalent linear condition, non-linear without surchage condition, non-linear with surcharge condition) and compared. Seismic analysis is performed on single pier with Opensees. From the earthquake vulnerability analysis, it is found that shallow foundation can be assumed as fixed condition. In conservative approach, stiffness of spring can be obtained based on Korean highway bridge design code for pile foundation which can consider the ground condition.

Development of Work Zone Traffic Control Algorithm for Two Lane Road (공사구간 교대통행 동적제어 알고리즘 개발)

  • Park, Hyunjin;Oh, Cheol;Moon, JaePil
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.2
    • /
    • pp.23-35
    • /
    • 2017
  • Work zone traffic control is of keen interest because both traffic operations and safety performances are directly affected by traffic management methods. In particular, work zone traffic on two-lane roads needs to be managed in more efficient and safer manners due to its unique characteristics of alternative right-of-way assignment. This study developed a dynamic control algorithm that can be used for real-time operations of two-lane work zone traffic. The performance of the developed algorithm was evaluated by VISSIM microscopic traffic simulator. An applied programming interface (API) based program was developed to plug-in the control algorithm onto the simulator. The results demonstrated the feasibility of the proposed control algorithm for two-lane work zone.

A study on the occurrence of cracks in the tunnel pavement in the soil under use (토사구간 공용중 터널 포장부 균열 발생에 관한 연구)

  • Kim, Nag-Young;Lee, Kang-Hyun;Cho, Nam-Hun;You, Kwang-Ho;Baek, Seung-Chol
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.5
    • /
    • pp.749-760
    • /
    • 2017
  • Recently, the proportion of tunnel structures in roads and railways has increased rapidly. Along with this trend, the rate of occurrence of cracks and dropouts in concrete lining of tunnel structures is increasing. Generally, maintenance of such concrete lining is normalized and managed as the core of maintenance work in tunnel maintenance. However, the maintenance of the tunnel pavement is important in securing driver in the tunnel. In the design of tunnels, the underground condition of the tunnel is designed to be in good rock condition, so there have not been many cases of cracks in the tunnel pavement in the past. Recently, the construction of tunnel structures has been rapidly increased, and the length of the tunnels has become longer.Tunnel pavement installed in these ground conditions is increasing the occurrence of cracks in the pavement due to decrease of bearing capacity of the pavement after a long time. In this study, FWD and GPR were conducted to analyze the types of cracks and the reduction of bearing capacity in the tunnel.

A Study on Seismic Retrofit Design of the Stabilized Piles by 1g Shaking Table Tests and Pseudo-static Analysis (1g 진동대 실험 및 등가정적해석을 이용한 억지말뚝의 사면안정 내진보강 효과 연구)

  • Han, Jin-Tae;Cho, Jong-Suck;Yoo, Min-Taek;Lee, Seung-Hyun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.93-101
    • /
    • 2011
  • Korea has about 70% of its land classified as the mountain area, which has led to cut-slope being the result of substantial road and railway construction. However, there is currently a lack of research about the seismic retrofit design of a slope, even though many earthquakes have recently occurred at home and abroad. In this study, in order to investigate the stabilizing effect of piles against sliding during an earthquake, a series of 1 g shaking table tests and pseudo-static analyses were carried out. As a result, the stabilizing effect of piles against sliding during an earthquake was verified by the 1 g shaking table tests and the most effective result from the pseudo-static analyses was that the installation of the piles on the central part of the slope, where the failure surface included piles unlike the lower part and upper part of the slope. Furthermore, when the pile was installed on the central part of the slope, the change of the safety factor depending on the distance between the center of two piles was evaluated.

Study on Imputation Methods of Missing Real-Time Traffic Data (실시간 누락 교통자료의 대체기법에 관한 연구)

  • Jang Jin-hwan;Ryu Seung-ki;Moon Hak-yong;Byun Sang-cheal
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.3 no.1 s.4
    • /
    • pp.45-52
    • /
    • 2004
  • There are many cities installing ITS(Intelligent Transportation Systems) and running TMC(Trafnc Management Center) to improve mobility and safety of roadway transportation by providing roadway information to drivers. There are many devices in ITS which collect real-time traffic data. We can obtain many valuable traffic data from the devices. But it's impossible to avoid missing traffic data for many reasons such as roadway condition, adversary weather, communication shutdown and problems of the devices itself. We couldn't do any secondary process such as travel time forecasting and other transportation related research due to the missing data. If we use the traffic data to produce AADT and DHV, essential data in roadway planning and design, We might get skewed data that could make big loss. Therefore, He study have explored some imputation techniques such as heuristic methods, regression model, EM algorithm and time-series analysis for the missing traffic volume data using some evaluating indices such as MAPE, RMSE, and Inequality coefficient. We could get the best result from time-series model generating 5.0$\%$, 0.03 and 110 as MAPE, Inequality coefficient and RMSE, respectively. Other techniques produce a little different results, but the results were very encouraging.

  • PDF

A Study on Improvement Methods of Cost Estimation in Order for the Proper Management of Street Trees (도시 가로수 관리 품셈 개선에 관한 연구)

  • Do, Yoon-Taek;Han, Bong-Ho;Park, Seok-Cheol
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.4
    • /
    • pp.20-36
    • /
    • 2022
  • This study aims to provide basic data for high-quality street tree management by setting reasonable management items and appropriate unit prices by reviewing the adequacy of current street tree management. Currently, street tree management items, except for street tree pruning, use general landscape tree quantity per unit for the street tree management quantity per unit. KEPCO (Korea Electric Power Corporation) applied pruning items from standard electric production infrastructure and carried out the activities at an average unit price of 51% lower for heavy pruning and 39% lower for light pruning than the standard estimate. This was judged to be a level that could not maintain or increase the quality of street tree management. It was determined that an appropriate standard unit price for street tree management was necessary. To improve the quantity per unit for the proper management of street trees, it was necessary to review costs in the field. However, due to the absence of data on actual construction costs in the domestic landscape field, detailed items of the US RSMeans Building Construction Cost Data (RSMeans) were reviewed, and the actual construction costs were calculated by applying personal domestic expenses. As a result, the standard of the estimated unit showed a good ratio of 107% for heavy pruning of street tree pruning compared to the actual construction cost, but light pruning was underestimated with a 59% ratio. Shrub pruning was 82%, weeding was 92%, tree fertilization was 87%, and windbreak wall installation was 91% under-engineered. In addition, it was also confirmed that the watering by sprinkler trucks and chemical spraying were over-designed compared to the actual construction cost at the rates of 118% and 124%, respectively. Due to the specificity of the street trees, the increase in personal expenses and the input cost of equipment, such as road safety controls, were judged to be the main cause of the underestimation of items. Therefore, it is necessary to add items related to street trees and general landscape trees to the landscape maintenance items of the standard of the estimated unit.