• Title/Summary/Keyword: 도금강판

Search Result 338, Processing Time 0.029 seconds

A Study of Electroplating Conditions and Corrosion Resistance for Al2O3 Dispersed Zn-Co-Cr Electroplated Steel Sheets (Al2O3 분산 Zn-Co-Cr 전기도금강판의 제조조건 및 내식성에 관한 연구)

  • Kim, S.B.;Suh, S.J.;Park, H.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.6 no.2
    • /
    • pp.89-97
    • /
    • 1993
  • An improvement in corrosion resistance of various types of Zn-coated steel sheets is thought to be possible with the addition of fine oxide powder to the coating. In this study the corrosion resistance of the $Al_2O_3$ dispersed Zn-Co-Cr electroplated steel sheet has been investigated and the results were as follows : The corrosion resistance of $Al_2O_3$ dispersed Zn-Co-Cr electroplated steel sheets was improved by increasing the contents of Co and Cr ions, and also $Al_2O_3$ powders in the bath because of the increased amount of Co, Cr and $Al_2O_3$ in deposits. In the $Al_2O_3$ dispersed Zn-Co-Cr electroplated steels sheet, the structure of deposits was changed from fine microstructure as observed in high Co containing deposits to coarse microstructure as in high Cr and $Al_2O_3$ containing deposits. By cold rolling of the $Al_2O_3$ dispersed Zn-Co-Cr electroplated steel sheets to about 2 percent, thr corrosion resistance was improved further.

  • PDF

The Waveform Control and Blowhole Generation in the Wave Pulse MIG Welding for Galvanized Steel Sheets (아연도금강판에 대한 중첩펄스 MIG 용접에서의 파형제어와 기공 발생 특성)

  • Cho Sang-Myung;Kim Ki-Jung;Lee Byung-Woo
    • Journal of Welding and Joining
    • /
    • v.23 no.1
    • /
    • pp.69-76
    • /
    • 2005
  • Recently, application of arc welding to galvanized carbon steel sheet is on the increasing Ould in the fields of automobile and construction industries. In arc welding process, zinc is evaporated in weld pool, even under the appropriate welding condition and produce blowhole and/or pit. Zinc gas cause instability of arc and increase spatter and fume. This research is purposed to minimize the heat-input and the formation of porosities in the welded joint of the galvanized carbon steel sheet using variable polarity AC wave pulse MIG welding system. An appropriate welding condition which showed low spatter and good bead appearance was acquired by applying the AC pulse MIG welding machine to DC duplicated MIG welding with the solid wire. When oxygen gas was added to shield gas of MIG welding for galvanized steel sheet, arc length was increased and arc stability was improved. In the AC duplicated welding, the loss of galvanized layer was decreased as the amount of heat-input was decreased when the EN ratio was increased under the condition that average welding current was evenly set.

The Strain Measurement of One Point Spot Welded Zone Using the 3-D ESPI (3-D ESPI법을 이용한 단점용접부의 변형률 측정)

  • Cha, Y.H.;Kang, D.J.;Jang, H.;Jang, K.C.;Sung, S.B.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.7
    • /
    • pp.597-601
    • /
    • 2008
  • Currently knowledge of strain in welds has mainly been obtained from strain gaging method: that is directly attaching most of the material to the gage. The very few non-contact methods are still in the early stage. One of the non-contact methods is by the use of the laser that has high-level of the accuracy for the measurement, and this laser also has excellent characteristics on which many studies for its applications are focused throughout the many fields. A method of study is on the measurement of the strain caused by the characteristics of the spot welded zone which is used with 3-D ESPI system that is functionally modified through the laser ESPI(Electronic Speckle Pattern Interferometry) system. This system employed the SGCC 1.2t which are mainly used for the steel plate such as automobile, structure, building material and electronic appliances.

Welding Characteristics of Low Carbon Steel with Al Coating Condition by Nd:YAG Laser (저탄소강의 알루미늄코팅조건에 따른 Nd:YAG 레이저 용접특성)

  • Kim, Jong-Do;Lee, Jung-Han;Kim, Sook-Hwan;Kim, Ki-Chol
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1317-1321
    • /
    • 2007
  • Aluminized steel sheet that Al coated on low carbon steel has a excellent heat resistance, thermal reflection and corrosion resistance. It has applied to fuel tank, automotive exhaust systems, etc. Laser weldability of the aluminized steel for the full penetration welding will be described in this paper. We focused on the effect of Al coating conditions on weld strength. For these objectives, aluminized steel sheets that has various thickness and coating weight were prepared for laser welding. And then, tensile-shear and hardness test were carried out. At that same time, Al content mixed in weld after laser welding was evaluated and investigated a correlation between the mixed Al and mechanical properties. Besides, as removing partially coating layer, weldability has been investigated according to position of coating layer. As a result of this study, as increasing Al content in weld, tensile-shear strength was decreased. Also it was identified that Al of coating layer caused grain growth.

  • PDF

A Simulation Case Study on Impact Safety Assessment of Roadside Barriers Built with High Anti-corrosion Hot-dip Alloy-coated Steel (용융합금도금 강판 적용 노측용 방호울타리 충돌 안전성 평가 해석 사례 연구)

  • Noh, Myung-Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.2
    • /
    • pp.83-89
    • /
    • 2016
  • As the world's industrial development quickens, the highways and regional expressways have been expanding to serve the logistics and transportation needs of people. The burgeoning road construction has led to a growing interest in roadside installations. These must have reliable performance over long periods, reduced maintenance and high durability. Steel roadside barriers are prone to corrosion and other compromises to their functionality. Therefore, using high anti-corrosion steel material is now seen as a viable solution to this problem. Thus, the objective of this paper is to expand the scope of applications for high anti-corrosion steel material for roadside barriers. This paper assesses the impact safety such as structural performance, occupant protection performance and post-impact vehicular response performance by a simulation review on roadside barriers built with high strength anti-corrosion steel materials named as hot-dip zinc-aluminium-magnesium alloy-coated steel. The simulation test results for the roadside barriers built with high strength anti-corrosion steels with reduced sectional thickness meet the safety evaluation criteria, hence the proposed roadside barrier made by high strength and high anti-corrosion hot-dip zinc-aluminium-magnesium alloy-coated steel will be a good solution to serve safe impact performance as well as save maintenance cost.

Development of anti-corrosive coating technique for alloy plated steel sheet using silane based organic-inorganic hybrid materials (Silane계 유무기 하이브리드 적용 합금도금강판 내식성 향상 코팅 기술 개발)

  • Park, Jongwon;Lee, Kyunghwang;Park, Byungkyu;Hong, Shinhyub
    • Corrosion Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.295-303
    • /
    • 2013
  • Silane surface treatments have been developed as an alternative for toxic and carcinogenic chromate-based treatments for years. It is consistently observed that ultra-thin films offer excellent corrosion protection as well as paint adhesion to metals. The silane performance is comparable to, or in some cases better than, that of chromate layers. Based on the tetra-ethylorthosilicate(TEOS) and methlyl trieethoxysilane(MTES), inorganic sol was synthesized and formed hybrid networks with $SiO_2$ nano particle and polypropylene glycol(PPG) on Zn alloyed steel surface. According to SST results, addition of 10nm and 50nm $SiO_2$ nanoparticle in synthesized solution improved anti-corrosion property by its shear stress relaxation effect during curing process. Also, SST results were shown that anti-corrosive property was affected by the amounts of organic compounds.

A Study on $CO_2$ Laser-TIG Hybrid Welding of Zinc-Coated Steel Sheet Part 2 : Relationship between Welding Parameters and Weldability (아연도금 강판의 $CO_2$ 레이저-TIG 하이브리드 용접에 관한 연구 Part 2 : 공정변수와 용접성과의 관계)

  • Kim, Cheol-Hee;Choi, Woong-Yong;Chae, Hyun-Byung;Kim, Jeong-Han;Rhee, Se-Hun
    • Journal of Welding and Joining
    • /
    • v.24 no.4
    • /
    • pp.27-31
    • /
    • 2006
  • Optimization of process parameters for laser-arc hybrid welding process is intrinsically sophisticated because the process has three kinds of parameters-arc, laser and hybrid welding parameters. In this paper, the relationship between weldability and several process parameters such as laser beam-arc distance, electrode height, welding current and welding speed, were investigated by the full factorial experimental design. Weld quality was evaluated by using weight of spatters which is related with the pore area. It was found that the weld quality was increased with the increases in laser beam-arc distance and welding current, and decreased with the increases in electrode height and welding speed.

A Study on $CO_2$ Laser-TIG Hybrid Welding of Zinc-Coated Steel Sheet Part 1: Analysis of Welding Phenomena (아연도금 강판의 $CO_2$ 레이저-TIG 하이브리드 용접에 관한 연구 Part 1 : 용접현상분석)

  • Kim, Cheol-Hee;Choi, Woong-Yong;Chae, Hyun-Byung;Kim, Jeong-Han;Rhee, Se-Hun
    • Journal of Welding and Joining
    • /
    • v.24 no.4
    • /
    • pp.22-26
    • /
    • 2006
  • In lap welding of zinc-coated steel, porosity formation is one of most significant weld defects, which is caused by zinc vapor generated between the steel sheets. Various solutions have been proposed in the past years but development of more effective method is a worthwhile subject to be investigated. In this study, autogenous laser welding and laser-TIG hybrid welding was applied to the lap welding of zinc-coated steel without gap, and weld pool behaviors were observed by using high speed camera and the porosity generation mechanism was analyzed. The weld defects were successfully eliminated by laser-TIG hybrid welding. This is because the leading TIG arc partially melted the upper sheet and vaporized/oxidized the coated zinc on the lapped surfaces prior to the trailing laser illuminating the specimen.

The Thickness Determination of Silicone Resin on Zinc Electroplated Steels using Compton Scattering (Compton 산란선을 이용한 아연계 전기도금강판 표면의 Slicone Resin Film 두께측정)

  • Jae Chun So;Do Hyung Lee
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.539-544
    • /
    • 1991
  • A method to determine the thickness of silicone resin film on zinc eletroplated steel using X-ray compton scattering was investigated. On the basis of the fact that compton scattering process predominates over photoelectric absorption for the light elements such as C, H, O and Si, the compton scattered line of RhK$_{\alpha}$ was used to determine the thickness of silicone resin. In this method, the standard calibration curve for thickness determination of silicone resin film was found to be linear in the range of 0.2~5.0 ${mu}$m film thickness. The analytical results agreed well with those obtained by the gravimetric method and the accuracy was found to be 0.22 ${mu}$m.

  • PDF

Effects of Zinc and Aluminum Hot-dip Galvanized Sheet Steel on the Gill and Hepatopancreas of the Abalone Haliotis discus hannai (아연 및 알루미늄 용융도금 처리된 강판이 북방전복(Haliotis discus hannai)의 아가미와 간췌장에 미치는 영향)

  • Lee, Chi Hoon;Park, Jun Young;Lee, Young Don
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.4
    • /
    • pp.388-395
    • /
    • 2017
  • We investigated the toxicity of zinc and aluminum hot-dip galvanized sheet steel to abalone Haliotis discus hannai via changes in the gill and hepatopancreas using histological and transmission electron microscopy analysis. Experimental groups were composed of one control and four exposure conditions (direct or indirect exposure to zinc and aluminum hot-dip galvanized sheet steel). In the control group, aluminum exposure groups (direct and indirect), and indirect zinc exposure group, abalone mortality was not observed until the end of the experiment, and no histopathological changes were observed in the gill and hepatopancreas. However, the direct zinc exposure group exhibited 100% mortality. Ultrastructural analysis of the cytoplasm of ciliated and microvilli-bearing epithelial cells from gill filaments revealed electron-dense vesicles near the cell membrane and disruption of the nuclear membrane. We also observed swollen mitochondria and a loss of mitochondrial cristae. The hepatopancreas showed similar changes, and we detected highly electron-dense particles within the vesicles. These results suggest that abalone exposed directly to zinc hot-dip galvanized sheet steel experience acute toxicity, causing damage to cell organelles in the gill and hepatopancreas and, finally, inducing mortality.